A bottom up approach to quantify foliar uptake of gaseous elemental mercury by European forests during the 2018 growing season

Author(s):  
Lena Wohlgemuth ◽  
Stefan Osterwalder ◽  
Günter Hoch ◽  
Christine Alewell ◽  
Martin Jiskra

<p>The deposition of gaseous elemental mercury, Hg(0), from the atmosphere to terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. However, there is emerging evidence that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. We will present a novel bottom up approach to calculate Hg(0) deposition fluxes to aboveground foliage by combining foliar Hg accumulation rates on the basis of leaf area with species-specific leaf area indices. We analyzed Hg content in 583 foliage samples from major tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to Northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all tree species at all sites. We found that foliar Hg accumulation rates normalized to leaf area increased with crown height and decreased with the age of multi-year old needles. We did not detect a clear latitudinal gradient in foliar Hg accumulation rates.</p><p>On an ecosystem scale we developed a simple bottom up approach for foliar Hg(0) uptake considering the systematic variations in crown height, needle age and tree species. We calculated species-specific average foliar Hg(0) dry deposition rates for the 2018 growing season of 22 ± 4 µg Hg m<sup>-2</sup> for beech, 16 ± 8 µg Hg m<sup>-2</sup> for oak, 3 ± 0.4 µg Hg m<sup>-2</sup> for birch, 18 ± 10 µg Hg m<sup>-2</sup> for spruce and 8 ± 4 µg Hg m<sup>-2</sup> for pine. For comparison, the average Hg wet deposition flux measured at 4 of our 10 research sites during the same time period was 2.5 ± 0.2 µg Hg m<sup>-2</sup>.</p><p>Scaling up site-specific deposition rates to the forested area of Europe (EU28) resulted in a total aboveground Hg(0) deposition to foliage of approximately 20 Mg during the 2018 growing season. Our results confirm that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. The bottom up approach we used is a promising method to quantify Hg(0) deposition fluxes based on easy-to-do Hg concentration measurements in foliage.</p>

2020 ◽  
Vol 17 (24) ◽  
pp. 6441-6456 ◽  
Author(s):  
Lena Wohlgemuth ◽  
Stefan Osterwalder ◽  
Carl Joseph ◽  
Ansgar Kahmen ◽  
Günter Hoch ◽  
...  

Abstract. The exchange of gaseous elemental mercury, Hg(0), between the atmosphere and terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. Emerging evidence suggests foliar uptake of atmospheric Hg(0) to be a major deposition pathway to terrestrial surfaces. Here, we present a bottom-up approach to calculate Hg(0) uptake fluxes to aboveground foliage by combining foliar Hg uptake rates normalized to leaf area with species-specific leaf area indices. This bottom-up approach incorporates systematic variations in crown height and needle age. We analyzed Hg content in 583 foliage samples from six tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all six tree species at all sites. We found that foliar Hg uptake rates normalized to leaf area were highest at the top of the tree crown. Foliar Hg uptake rates decreased with needle age of multiyear-old conifers (spruce and pine). Average species-specific foliar Hg uptake fluxes during the 2018 growing season were 18 ± 3 µg Hg m−2 for beech, 26 ± 5 µg Hg m−2 for oak, 4 ± 1 µg Hg m−2 for pine and 11 ± 1 µg Hg m−2 for spruce. For comparison, the average Hg(II) wet deposition flux measured at 5 of the 10 research sites during the same period was 2.3 ± 0.3 µg Hg m−2, which was 4 times lower than the site-averaged foliar uptake flux of 10 ± 3 µg Hg m−2. Scaling up site-specific foliar uptake rates to the forested area of Europe resulted in a total foliar Hg uptake flux of approximately 20 ± 3 Mg during the 2018 growing season. Considering that the same flux applies to the global land area of temperate forests, we estimate a foliar Hg uptake flux of 108 ± 18 Mg. Our data indicate that foliar Hg uptake is a major deposition pathway to terrestrial surfaces in Europe. The bottom-up approach provides a promising method to quantify foliar Hg uptake fluxes on an ecosystem scale.


2020 ◽  
Author(s):  
Lena Wohlgemuth ◽  
Stefan Osterwalder ◽  
Carl Joseph ◽  
Ansgar Kahmen ◽  
Günter Hoch ◽  
...  

Abstract. The exchange of gaseous elemental mercury, Hg(0), between the atmosphere and terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. Emerging evidence suggests foliar uptake of atmospheric Hg(0) to be a major deposition pathway to terrestrial surfaces. Here, we present a bottom-up approach to calculate Hg(0) uptake fluxes to aboveground foliage by combining foliar Hg uptake rates normalized to leaf area with species-specific leaf area indices. This bottom-up approach incorporates systematic variations in crown height and needle age. We analyzed Hg content in 583 foliage samples from six tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to Northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all six tree species at all sites. We found that foliar Hg uptake rates normalized to leaf area were highest at the top of the tree crown. Foliar Hg uptake rates decreased with needle age of multi-year old conifers (spruce and pine). Average species-specific foliar Hg uptake fluxes during the 2018 growing season were 18 ± 3 µg Hg m−2 for beech, 26 ± 5 µg Hg m−2 for oak, 4 ± 1 µg Hg m−2 for pine and 11 ± 1 µg Hg m−2 for spruce. For comparison, the average Hg(II) wet deposition flux measured at 5 of the 10 research sites during the same period was 2.3 ± 0.3 µg Hg m−2, which was four times lower than the site-averaged foliar uptake flux of 10 ± 3 µg Hg m−2. Scaling up site-specific foliar uptake rates to the forested area of Europe resulted in a total foliar Hg uptake flux of approximately 20 ± 3 Mg during the 2018 growing season. Considering that the same flux applies to the global land area of temperate forests, we estimate a foliar Hg uptake flux of 108 ± 18 Mg. Our data indicate that foliar Hg uptake is a major deposition pathway to terrestrial surfaces in Europe. The bottom up approach provides a promising method to quantify foliar Hg uptake fluxes on an ecosystem scale.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sara Zaferani ◽  
Harald Biester

Understanding marine mercury (Hg) biogeochemistry is crucial, as the consumption of Hg-enriched ocean fish is the most important pathway of Hg uptake in humans. Although ocean sediments are seen as the ultimate Hg sink, marine sediment studies on Hg accumulation are still rare. In this context, studying Hg behavior in the marine environment, especially in upwelling environments, is of particular interest due to its importance in these great upwelling regions for the global fishery. There are contradictory statements about the fate of Hg in upwelling regions. Some studies have suggested high biotic reduction of oxidized Hg and gaseous elemental mercury evasion to the atmosphere. More recent work has suggested that in upwelling regions, where productivity is high, evasion of gaseous elemental mercury is diminished due to scavenging and sedimentation of Hg by organic particles. In this study, we compared Hg concentrations and accumulation rates in the past ∼4,300 and 19,400 years derived from sediment cores collected in the Peruvian upwelling region (Peru Margin) and compared them with those of two other cores collected from the sediment fan of the Amazon and a core from the Congo Basin, which is influenced by both seasonal coastal upwelling and discharge from the river. Median Hg concentrations were higher at the Peru Margin (90.7 μg kg–1) and in the Congo Basin (93.4 μg kg–1) than in the Amazon Fan (35.8 μg kg–1). The average Hg accumulation rates in sediments from the Peru Margin (178 μg m–2 yr–1) were factors of ∼4 and ∼39 times higher than those from the Congo Basin (46.7 μg m–2 yr–1) and Amazon Fan (4.52 μg m–2 yr–1), respectively. Principal component analysis (PCA) of the geochemical data set reveals that Amazon Fan sediments are strongly influenced by the deposition of terrestrial material, which is of less importance in the Congo Basin and of minor importance in Peru Margin sediments. Accordingly, Hg export to sediments in upwelling areas largely surpasses that in fans of large rivers that drain large terrestrial catchments. The high Hg accumulation rates in the sediments from the upwelling area and the minor influence of terrestrial Hg fluxes there suggest that atmospheric-derived Hg in upwelling areas is effectively exported to the sediments through scavenging by organic particles.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Rute Cesário ◽  
Nelson J. O’Driscoll ◽  
Sara Justino ◽  
Claire E. Wilson ◽  
Carlos E. Monteiro ◽  
...  

In situ air concentrations of gaseous elemental mercury (Hg(0)) and vegetation–atmosphere fluxes were quantified in both high (Cala Norte, CN) and low-to-moderate (Alcochete, ALC) Hg-contaminated saltmarsh areas of the Tagus estuary colonized by plant species Halimione portulacoides (Hp) and Sarcocornia fruticosa (Sf). Atmospheric Hg(0) ranged between 1.08–18.15 ng m−3 in CN and 1.18–3.53 ng m−3 in ALC. In CN, most of the high Hg(0) levels occurred during nighttime, while the opposite was observed at ALC, suggesting that photoreduction was not driving the air Hg(0) concentrations at the contaminated site. Vegetation–air Hg(0) fluxes were low in ALC and ranged from −0.76 to 1.52 ng m−2 (leaf area) h−1 for Hp and from −0.40 to 1.28 ng m−2 (leaf area) h−1 for Sf. In CN, higher Hg fluxes were observed for both plants, ranging from −9.90 to 15.45 ng m−2 (leaf area) h−1 for Hp and from −8.93 to 12.58 ng m−2 (leaf area) h−1 for Sf. Mercury flux results at CN were considered less reliable due to large and fast variations in the ambient air concentrations of Hg(0), which may have been influenced by emissions from the nearby chlor-alkali plant, or historical contamination. Improved experimental setup, the influence of high local Hg concentrations and the seasonal activity of the plants must be considered when assessing vegetation–air Hg(0) fluxes in Hg-contaminated areas.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Masahiro Yamaguchi ◽  
Yoshiyuki Kinose ◽  
Hideyuki Matsumura ◽  
Takeshi Izuta

The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.


2017 ◽  
Vol 14 (2) ◽  
pp. 257-269 ◽  
Author(s):  
Aino Korrensalo ◽  
Pavel Alekseychik ◽  
Tomáš Hájek ◽  
Janne Rinne ◽  
Timo Vesala ◽  
...  

Abstract. In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in the photosynthetic rate and leaf area of different species. Photosynthetic properties (light response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance (EC) measurements.Species areal cover, rather than differences in photosynthetic properties, determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which, in turn, determined the seasonal variation in ecosystem PG. The upscaled growing season PG estimate, 230 g C m−2, agreed well with the GPP estimated by the EC (243 g C m−2).Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species, together with their differences in photosynthetic parameters, shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity, i.e., the presence of plant groups with different seasonal timing and efficiency of photosynthesis, may increase the stability of C sinks of boreal bogs.


2016 ◽  
Author(s):  
Aino Korrensalo ◽  
Tomáš Hájek ◽  
Pavel Alekseychik ◽  
Janne Rinne ◽  
Timo Vesala ◽  
...  

Abstract. In boreal bogs plant species are low in number, but they differ greatly in their growth forms and photosynthetic properties. We assessed how ecosystem carbon (C) sink dynamics were affected by seasonal variations in photosynthetic rate and leaf area of different species. Photosynthetic properties (light-response parameters), leaf area development and areal cover (abundance) of the species were used to quantify species-specific net and gross photosynthesis rates (PN and PG, respectively), which were summed to express ecosystem-level PN and PG. The ecosystem-level PG was compared with a gross primary production (GPP) estimate derived from eddy covariance measurements (EC). Species areal cover rather than differences in photosynthetic properties determined the species with the highest PG of both vascular plants and Sphagna. Species-specific contributions to the ecosystem PG varied over the growing season, which in turn determined the seasonal variation in ecosystem PG. The upscaled growing-season PG estimate, 230 g C m−2, agreed well with the GPP estimated by the EC, 243 g C m−2. Sphagna were superior to vascular plants in ecosystem-level PG throughout the growing season but had a lower PN. PN results indicated that areal cover of the species together with their differences in photosynthetic parameters shape the ecosystem-level C balance. Species with low areal cover but high photosynthetic efficiency appear to be potentially important for the ecosystem C sink. Results imply that functional diversity may increase the stability of C sink of boreal bogs.


2010 ◽  
Vol 10 (5) ◽  
pp. 2425-2437 ◽  
Author(s):  
X. W. Fu ◽  
X. Feng ◽  
Z. Q. Dong ◽  
R. S. Yin ◽  
J. X. Wang ◽  
...  

Abstract. China is regarded as the largest contributor of mercury (Hg) to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.


2016 ◽  
Author(s):  
Xuewu Fu ◽  
Wei Zhu ◽  
Hui Zhang ◽  
Jonas Sommar ◽  
Xu Yang ◽  
...  

Abstract. There exists observational evidence that GEM can be readily removed from the atmosphere via chemical oxidation followed by deposition in the polar and sub-polar regions, free troposphere, lower stratosphere, and marine boundary layer under specific environmental conditions. Here we report GEM depletions in a temperate mixed forest at Mt. Changbai, Northeast China. The depletion occurred exclusively at night during leaf-growing season and in the absence of GOM enrichment (GOM 


Sign in / Sign up

Export Citation Format

Share Document