scholarly journals Chasing a hidden fracture using seismic refraction tomography: case study Preonzo, Switzerland

Author(s):  
Mauro Häusler ◽  
Franziska Glüer ◽  
Jan Burjánek ◽  
Donat Fäh

<p>The Preonzo rock slope instability in southern Switzerland partly collapsed in 2012, releasing a volume of ~210’000 m3 and leaving behind an unstable rock mass of about 140’000 m3. Shortly after the collapse, a small-aperture seismic array measurement was performed on the remaining unstable volume. The analysis of these data showed a fundamental resonance frequency of about 3.5 Hz and strong wavefield amplifications with factors of more than 30 in direction perpendicular to open tension cracks. Normal mode analysis by frequency domain decomposition using the fundamental and several higher modes allowed for mapping the fracture network of the instability.<br>However, the observed amplification factors and mode shapes could not be explained solely by the open tension cracks visible at the surface. Strong amplifications, especially at frequencies of higher modes, were observed on the uphill part of the rear fracture, which was supposed to be outside the presumed unstable area. The zone where amplifications rapidly decreased in the uphill direction coincides roughly with a geomorphological lineament in the field, interpreted as an additional, but hidden, rear fracture. <br>We performed active seismic refraction tomography across this lineament and discovered distinct low velocity anomalies in the transition zone from high to low amplifications, supporting the interpretation of an additional fracture. Considering this new finding, the volume of the unstable rock mass increases by about 40 %. </p>

2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2016 ◽  
Vol 858 ◽  
pp. 73-80
Author(s):  
Ying Kong ◽  
Hua Peng Shi ◽  
Hong Ming Yu

With the slope unstable rock masses of a stope in Longsi mine, Jiaozuo City, China as the target, we computed and analyzed the stability of unstable rock masses using a limit equilibrium method (LEM) and a discrete element strength reduction method (SRM). Results show that the unstable rock masses are currently stable. Under the external actions of natural weathering, rainfall and earthquake, unstable rock mass 1 was manifested as a shear slip failure mode, and its stability was controlled jointly by bedding-plane and posterior-margin steep inclined joints. In comparison, unstable rock mass 2 was manifested as a tensile-crack toppling failure mode, and its stability was controlled by the perforation of posterior-margin joints. From the results of the 2 methods we find the safety factor determined from SRM is larger, but not significantly, than that from LEM, and SRM can simulate the progressive failure process of unstable rock masses. SRM also provides information about forces and deformation (e.g. stress-strain, and displacement) and more efficiently visualizes the parts at the slope that are susceptible to instability, suggesting SRM can be used as a supplementation of LEM.


2013 ◽  
Vol 5 ◽  
pp. 227-231 ◽  
Author(s):  
I.N. Azwin ◽  
Rosli Saad ◽  
M. Nordiana

2016 ◽  
Author(s):  
Mathias Ronczka ◽  
Kristofer Hellman ◽  
Thomas Günther ◽  
Roger Wisen ◽  
Torleif Dahlin

Abstract. Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons they tend to be more frequent at water passages. Ground investigations that provide information of the subsurface are necessary prior to the construction phase, but can be logistically difficult. Geophysics can help close the gaps between local point information and produce subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically and, from a measuring perspective, challenging area. The presented surveys cover a water passage along a part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong powerline noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m long underwater section of the 700 m long profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern part of the underwater passage cannot be detected by separated inversion. A simple synthetic study shows significant three dimensional artefacts corrupting the ERT model that have to be taken into account while interpreting the results. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significant large thickness are detected in the otherwise unusually well documented geological environment. The results significantly improve imaging of some geologic features, which would have been not detected or misinterpreted otherwise, and combines the images by means of cluster analysis to a conceptual subsurface model.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Rose Nadia ◽  
Rosli Saad ◽  
Nordiana Muztaza ◽  
Nur Azwin Ismail ◽  
Mohd Mokhtar Saidin

In this study, correlation is made between seismic P-wave velocities (Vp) with standard penetration test (SPT-N) values to produce soil parameter estimation for engineering site applications. A seismic refraction tomography (SRT) line of 69 m length was spread across two boreholes with 3 m geophones spacing. The acquired data were processed using Firstpix, SeisOpt2D and surfer8 software. The Vp at particular depths were pinpointed and correlated with geotechnical parameters (SPT-N values) from the borehole records. The correlation between Vp and SPT-N values has been established. For cohesive soils, it is grouped into three categories according to consistencies; stiff, very stiff and hard, having velocity rangesof 575-314 m/s, 808-1483 m/s and 1735-2974 m/s, respectively. For non-cohesive soils, it is also divided into three categories based on the denseness as loose, medium dense and dense with Vp ranges of 528-622 m/s, 900-2846 m/s and 2876-2951 m/s, respectively


1998 ◽  
Vol 120 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Huan Wang ◽  
Keith Williams ◽  
Wei Guan

Based on their three-dimensional mode shapes, the vibrational modes of free finite length thick cylinders can be classified into 6 categories, consisting of pure radial, radial motion with radial shearing, extensional, circumferential, axial bending, and global modes. This classification, together with the numbers of both the circumferential and the longitudinal nodes, is sufficient to identify each mode of a finite length thick cylinder. The mode classification was verified experimentally by measurements on a thick cylinder. According to the displacement distribution ratio in the radial, tangential and longitudinal directions, the effect of varying cylinder length on the vibrational modes is such that all the modes can be broadly categorized as either pure radial modes, or non pure radial modes. The natural frequencies and mode shapes of the former are dependent upon only the radial dimensions of the models, while the natural frequencies and mode shapes of the latter are dependent upon both the axial length and radial thickness.


2016 ◽  
Vol 134 ◽  
pp. 64-76 ◽  
Author(s):  
S. Uhlemann ◽  
S. Hagedorn ◽  
B. Dashwood ◽  
H. Maurer ◽  
D. Gunn ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Hossein Taherynia ◽  
Mojtaba Mohammadi ◽  
Rasoul Ajalloeian

Assessment of the stability of natural and artificial rock slopes is an important topic in the rock mechanics sciences. One of the most widely used methods for this purpose is the classification of the slope rock mass. In the recent decades, several rock slope classification systems are presented by many researchers. Each one of these rock mass classification systems uses different parameters and rating systems. These differences are due to the diversity of affecting parameters and the degree of influence on the rock slope stability. Another important point in rock slope stability is appraisal hazard and risk analysis. In the risk analysis, the degree of danger of rock slope instability is determined. The Lashotor pass is located in the Shiraz-Isfahan highway in Iran. Field surveys indicate that there are high potentialities of instability in the road cut slopes of the Lashotor pass. In the current paper, the stability of the rock slopes in the Lashotor pass is studied comprehensively with different classification methods. For risk analyses, we estimated dangerous area by use of the RocFall software. Furthermore, the dangers of falling rocks for the vehicles passing the Lashotor pass are estimated according to rockfall hazard rating system.


Sign in / Sign up

Export Citation Format

Share Document