Simulation of Mesoscale Convective Systems near the Tropical Andes: Insights from Convection-Permitting Simulations of Two Events

Author(s):  
J. Alejandro Martinez ◽  
Juan Carlos Camacho ◽  
Daniel Vasquez ◽  
Daniel Espinosa ◽  
Paola A. Arias

<p>Mesoscale Convective Systems (MCSs) are associated with an important fraction of total precipitation in the vicinity of the Tropical Andes, and are related to high impact weather events and extreme rainfall.  Important ingredients include input of moisture and synoptic conditions particular of each location, depending on the regional scale circulation and the local topography.  Convection-Permitting (CP) simulations can help to better describe events with MCSs, including details of surface processes, low-level moisture transport and mountain-related circulations. Here we present a description of two MCSs in the vicinity of the Tropical Andes based on gridded observation-based data (ERA5 and GPM), in situ measurements and CP simulations with the Weather Research and Forecasting (WRF) model.  One of the events took place near the Andes-Amazon transition region (Mocoa-Colombia), with, reportedly, more than 100mm of precipitation accumulated in 3 hours in one location, accompanied with strong low-level transport of moisture by the (nocturnal) Orinoco Low-Level Jet (OLLJ) and strong mid-tropospheric easterly winds towards the Andes, favorable for orographic enhancenment of precipitation.  The other event took place over the low-lands of the Magdalena-Cauca basin (Cordoba-Colombia), with an approximate size of 71304 km<sup>2 </sup>, according to its cloud top temperature pattern.  In this region a sea-breeze provides moisture from oceanic origin, and the nearby Andes might help to enhance low-level convergence via orographic blocking and other mountain-related effects.  Based on kilometer-scale CP simulations we describe details of the initiation and life cycle of these two MCSs as simulated by WRF, including a description of the low-level input of moisture provided by the sea-breeze and the nocturnal jet during the initiation and mature stages, the corresponding mesoscale circulations in the vicinity of the Andes, and the intensity of the simulated precipitation.  Preliminary 3-km simulations of the Mocoa event show the low-level flow blocking by the Andes, the enhanced orographic precipitation, and an underestimation of the maximum intensity of rainfall. This study might help on understanding the skill and limitations of CP simulations for representing weather systems associated to extreme rainfall in the Tropical Andes. </p>

2021 ◽  
Vol 34 (1) ◽  
pp. 71-87
Author(s):  
Cornelia Klein ◽  
Francis Nkrumah ◽  
Christopher M. Taylor ◽  
Elijah A. Adefisan

AbstractMesoscale convective systems (MCSs) are the major source of extreme rainfall over land in the tropics and are expected to intensify with global warming. In the Sahel, changes in surface temperature gradients and associated changes in wind shear have been found to be important for MCS intensification in recent decades. Here we extend that analysis to southern West Africa (SWA) by combining 34 years of cloud-top temperatures with rainfall and reanalysis data. We identify clear trends in intense MCSs since 1983 and their associated atmospheric drivers. We also find a marked annual cycle in the drivers, linked to changes in the convective regime during the progression of the West African monsoon. Before the peak of the first rainy season, we identify a shear regime where increased temperature gradients play a crucial role for MCS intensity trends. From June onward, SWA moves into a less unstable, moist regime during which MCS trends are mainly linked to frequency increase and may be more influenced by total column water vapor. However, during both seasons we find that MCSs with the most intense convection occur in an environment with stronger wind shear, increased low-level humidity, and drier midlevels. Comparing the sensitivity of MCS intensity and peak rainfall to low-level moisture and wind shear conditions preceding events, we find a dominant role for wind shear. We conclude that MCS trends are directly linked to a strengthening of two distinct convective regimes that cause the seasonal change of SWA MCS characteristics. However, the convective environment that ultimately produces the most intense MCSs remains the same.


2012 ◽  
Vol 30 (8) ◽  
pp. 1235-1248 ◽  
Author(s):  
J.-H. Jeong ◽  
D.-I. Lee ◽  
C.-C. Wang ◽  
S.-M. Jang ◽  
C.-H. You ◽  
...  

Abstract. To understand the different environment and morphology for heavy rainfall during 9–10 July 2007, over the Korean Peninsula, mesoscale convective systems (MCSs) that accompanied the Changma front in two different regions were investigated. The sub-synoptic conditions were analysed using mesoscale analysis data (MANAL), reanalysis data, weather charts and Multi-functional Transport Satellite (MTSAT-IR) data. Dual-Doppler radar observations were used to analyse the wind fields within the precipitation systems. During both the case periods, the surface low-pressure field intensified and moved northeastward along the Changma front. A low-level warm front gradually formed with an east-west orientation, and the cold front near the low pressure was aligned from northeast to southwest. The northern convective systems (meso-α-scale) were embedded within an area of stratiform cloud north of the warm front. The development of low-level pressure resulted in horizontal and vertical wind shear due to cyclonic circulation. The wind direction was apparently different across the warm front. In addition, the southeasterly flow (below 4 km) played an important role in generating new convective cells behind the prevailing convective cell. Each isolated southern convective cell (meso-β-scale) moved along the line ahead of the cold front within the prefrontal warm sector. These convective cells developed when a strong southwesterly low-level jet (LLJ) intensified and moisture was deeply advected into the sloping frontal zone. A high equivalent potential temperature region transported warm moist air in a strong southwesterly flow, where the convectively unstable air led to updraft and downdraft with a strong reflectivity core.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2020 ◽  
Vol 148 (2) ◽  
pp. 655-669 ◽  
Author(s):  
Kelly M. Núñez Ocasio ◽  
Jenni L. Evans ◽  
George S. Young

Abstract This study introduces the development of the Tracking Algorithm for Mesoscale Convective Systems (TAMS), an algorithm that allows for the identifying, tracking, classifying, and assigning of rainfall to mesoscale convective systems (MCSs). TAMS combines area-overlapping and projected-cloud-edge tracking techniques to maximize the probability of detecting the progression of a convective system through time, accounting for splits and mergers. The combination of projection on area overlapping is equivalent to setting the background flow in which MCSs are moving on. Sensitivity tests show that area-overlapping technique with no projection (thus, no background flow) underestimates the real propagation speed of MCSs over Africa. The MCS life cycles and propagation derived using TAMS are consistent with climatology. The rainfall assignment is also more reliable than with previous methods as it utilizes a combination of regridding through linear interpolation with high temporal and spatial resolution data. This makes possible the identification of extreme rainfall events associated with intense MCSs more effectively. TAMS will be utilized in future work to build an AEW–MCS dataset to study tropical cyclogenesis.


2017 ◽  
Vol 145 (6) ◽  
pp. 2177-2200 ◽  
Author(s):  
Russ S. Schumacher ◽  
John M. Peters

Abstract This study investigates the influences of low-level atmospheric water vapor on the precipitation produced by simulated warm-season midlatitude mesoscale convective systems (MCSs). In a series of semi-idealized numerical model experiments using initial conditions gleaned from composite environments from observed cases, small increases in moisture were applied to the model initial conditions over a layer either 600 m or 1 km deep. The precipitation produced by the MCS increased with larger moisture perturbations as expected, but the rainfall changes were disproportionate to the magnitude of the moisture perturbations. The experiment with the largest perturbation had a water vapor mixing ratio increase of approximately 2 g kg−1 over the lowest 1 km, corresponding to a 3.4% increase in vertically integrated water vapor, and the area-integrated MCS precipitation in this experiment increased by nearly 60% over the control. The locations of the heaviest rainfall also changed in response to differences in the strength and depth of the convectively generated cold pool. The MCSs in environments with larger initial moisture perturbations developed stronger cold pools, and the convection remained close to the outflow boundary, whereas the convective line was displaced farther behind the outflow boundary in the control and the simulations with smaller moisture perturbations. The high sensitivity of both the amount and location of MCS rainfall to small changes in low-level moisture demonstrates how small moisture errors in numerical weather prediction models may lead to large errors in their forecasts of MCS placement and behavior.


2007 ◽  
Vol 22 (4) ◽  
pp. 813-838 ◽  
Author(s):  
Israel L. Jirak ◽  
William R. Cotton

Abstract Mesoscale convective systems (MCSs) have a large influence on the weather over the central United States during the warm season by generating essential rainfall and severe weather. To gain insight into the predictability of these systems, the precursor environments of several hundred MCSs across the United States were reviewed during the warm seasons of 1996–98. Surface analyses were used to identify initiating mechanisms for each system, and North American Regional Reanalysis (NARR) data were used to examine the environment prior to MCS development. Similarly, environments unable to support organized convective systems were also investigated for comparison with MCS precursor environments. Significant differences were found between environments that support MCS development and those that do not support convective organization. MCSs were most commonly initiated by frontal boundaries; however, features that enhance convective initiation are often not sufficient for MCS development, as the environment needs also to be supportive for the development and organization of long-lived convective systems. Low-level warm air advection, low-level vertical wind shear, and convective instability were found to be the most important parameters in determining whether concentrated convection would undergo upscale growth into an MCS. Based on these results, an index was developed for use in forecasting MCSs. The MCS index assigns a likelihood of MCS development based on three terms: 700-hPa temperature advection, 0–3-km vertical wind shear, and the lifted index. An evaluation of the MCS index revealed that it exhibits features consistent with common MCS characteristics and is reasonably accurate in forecasting MCSs, especially given that convective initiation has occurred, offering the possibility of usefulness in operational forecasting.


2013 ◽  
Vol 28 (5) ◽  
pp. 1081-1098 ◽  
Author(s):  
Linlin Zheng ◽  
Jianhua Sun ◽  
Xiaoling Zhang ◽  
Changhai Liu

Abstract Composite reflectivity Doppler radar data from June to September of 2007–2010 were used to classify mesoscale convective systems (MCSs) over central east China into seven morphologies. The morphologies included one nonlinear mode (NL) and six linear modes: convective lines with no stratiform precipitation (NS), trailing stratiform precipitation (TS), leading stratiform precipitation (LS), parallel stratiform precipitation (PS), bow echoes (BE), and embedded lines (EL). Nonlinear and linear systems composed 44.7% and 55.3% of total MCSs, respectively, but there was no primary linear mode. All MCS morphologies attained their peak occurrence in July, except BE systems, which peaked in June. On average, TS and PS modes had relatively longer lifespans than did other modes. Significant differences in MCS-produced severe weather existed between dry and moist environments. High winds and hail events were mainly observed in dry environments, and in contrast, short-term intense precipitation occurred more frequently in moist environments. BE systems generated the most severe weather on average, while most TS systems were attendant with short-term intense precipitation and high winds. EL and PS systems were most frequently associated with extreme short-time intense precipitation (≥50 mm h−1) as these systems preferentially developed in moist environments. BE systems generally occurred under strong low-level shear and intermediately moist conditions. LS systems were observed in weak low-level shear, whereas EL systems often developed in relatively stable conditions and weak low- to middle-level shear. The largest instability was present in the environment for NS systems. The environmental parameters for TS systems featured the largest differences between the dry and moist cases.


2014 ◽  
Vol 27 (21) ◽  
pp. 8151-8169 ◽  
Author(s):  
Atsushi Hamada ◽  
Yuki Murayama ◽  
Yukari N. Takayabu

Abstract Characteristics and global distribution of regional extreme rainfall are presented using 12 yr of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements. By considering each rainfall event as a set of contiguous PR rainy pixels, characteristic values for each event are obtained. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile on a 2.5° × 2.5° horizontal-resolution grid. The geographical distribution of extreme rainfall rates shows clear regional differences. The size and volumetric rainfall of extreme events also show clear regional differences. Extreme rainfall rates show good correlations with the corresponding rain-top heights and event sizes over oceans but marginal or no correlation over land. The time of maximum occurrence of extreme rainfall events tends to be during 0000–1200 LT over oceans, whereas it has a distinct afternoon peak over land. There are also clear seasonal differences in which the occurrence over land is largely coincident with insolation. Regional extreme rainfall is classified by extreme rainfall rate (intensity) and the corresponding event size (extensity). Regions of “intense and extensive” extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of “intense but less extensive” extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of “extensive but less intense” extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones.


2010 ◽  
Vol 25 (3) ◽  
pp. 970-984 ◽  
Author(s):  
Paloma Borque ◽  
Paola Salio ◽  
Matilde Nicolini ◽  
Yanina García Skabar

Abstract The present work focuses on the study of the environmental conditions preceding the development of a group of subtropical mesoscale convective systems over central and northern Argentina on 6–7 February 2003 during the South American Low Level Jet Experiment. This period was characterized by an extreme northerly low-level flow along the eastern Andes foothills [South American low-level jet (SALLJ)]. The entire studied episode was dominated by the presence of a very unstable air mass over northern Argentina and a frontal zone near 40°S. The SALLJ generated an important destabilization of the atmosphere due to the strong humidity and differential temperature advection. Orography provided an extra lifting motion to the configuration of the regional wind field, which was efficient in forcing the initiation of convection. Once convection developed, it moved and regenerated in regions where the convective instability was horizontally homogeneous and stronger.


Sign in / Sign up

Export Citation Format

Share Document