The Influence of Ozone Feedbacks on Surface Climate following Spring Arctic Ozone Depletion

Author(s):  
Marina Friedel ◽  
Gabriel Chiodo ◽  
Andrea Stenke ◽  
Daniela Domeisen ◽  
Stefan Muthers ◽  
...  

<p>Links between springtime Arctic stratospheric ozone anomalies and anomalous surface weather in the Northern Hemisphere have been found recently. Stratospheric ozone thus provides valuable information which may help to improve seasonal predictability. However, the extent and causality of the ozone-surface climate coupling remain unclear and many state-of-the-art forecast models lack any representation of ozone feedbacks on planetary circulation.</p><p>We investigate the importance of the ozone-surface climate coupling with two Chemistry Climate Models, contrasting simulations with fully interactive ozone against prescribed zonally averaged climatological ozone under fixed present-day boundary conditions. We focus on springtime Arctic ozone minima and compare subsequent surface patterns in runs with and without interactive ozone, thus rendering a detailed and physically-based quantification of the stratospheric ozone impact on surface climate possible.  </p><p>All model simulations show a connection between Arctic ozone minima and a positive phase of the Arctic Oscillation in the month after the depletion in spring. Runs with interactive ozone chemistry show an amplified surface response and a 40% stronger Arctic Oscillation index after ozone depletion. This amplified Arctic Oscillation goes along with enhanced positive surface temperature anomalies over Eurasia. Moreover, composite surface patterns after spring ozone minima in model simulations with interactive ozone show a better agreement with composites in reanalysis data compared to runs with prescribed ozone.</p><p>Mechanisms whereby stratospheric ozone affects both the stratospheric and tropospheric circulation are explored. These include the reduction of short-wave heating over the pole due to ozone loss, thus amplifying stratospheric temperature anomalies and allowing for an intensification of the polar vortex with subsequent impacts on wave propagation and the stratospheric meridional circulation. This suggests that ozone is not only passively responding to stratospheric dynamics, but actively feeds back into the circulation. Following these results, stratospheric ozone anomalies actively contribute to anomalous surface weather in spring, emphasizing the potential importance of interactive ozone chemistry for seasonal predictions.</p>

2021 ◽  
Author(s):  
Marina Friedel ◽  
Gabriel Chiodo ◽  
Andrea Stenke ◽  
Daniela Domeisen ◽  
Stephan Fueglistaler ◽  
...  

Abstract Massive spring ozone loss due to anthropogenic emissions of ozone depleting substances is not limited to the austral hemisphere, but can also occur in the Arctic. Previous studies have suggested a link between springtime Arctic ozone depletion and Northern Hemispheric surface climate, which might add surface predictability. However, so far it has not been possible to isolate the role of stratospheric ozone from dynamical downward impacts. For the first time, we quantify the impact of springtime Arctic ozone depletion on surface climate using observations and targeted chemistry-climate model experiments to isolate the effects of ozone feedbacks. We find that springtime stratospheric ozone depletion is followed by surface anomalies in precipitation and temperature resembling a positive Arctic Oscillation. Most notably, we show that these anomalies, affecting large portions of the Northern Hemisphere, cannot be explained by dynamical variability alone, but are to a significant degree driven by stratospheric ozone. The surface signal is linked to reduced shortwave absorption by stratospheric ozone, forcing persistent negative temperature anomalies in the lower stratosphere and a delayed breakup of the polar vortex - analogous to ozone-surface coupling in the Southern Hemisphere.These results suggest that Arctic stratospheric ozone actively forces springtime Northern Hemispheric surface climate and thus provides a source of predictability on seasonal scales.


2021 ◽  
Author(s):  
Ramina Alwarda ◽  
Kristof Bognar ◽  
Kimberly Strong ◽  
Martyn Chipperfield ◽  
Sandip Dhomse ◽  
...  

<p>The Arctic winter of 2019-2020 was characterized by an unusually persistent polar vortex and temperatures in the lower stratosphere that were consistently below the threshold for the formation of polar stratospheric clouds (PSCs). These conditions led to ozone loss that is comparable to the Antarctic ozone hole. Ground-based measurements from a suite of instruments at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Canada (80.05°N, 86.42°W) were used to investigate chemical ozone depletion. The vortex was located above Eureka longer than in any previous year in the 20-year dataset and lidar measurements provided evidence of polar stratospheric clouds (PSCs) above Eureka. Additionally, UV-visible zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements showed record ozone loss in the 20-year dataset, evidence of denitrification along with the slowest increase of NO<sub>2</sub> during spring, as well as enhanced reactive halogen species (OClO and BrO). Complementary measurements of HCl and ClONO<sub>2</sub> (chlorine reservoir species) from a Fourier transform infrared (FTIR) spectrometer showed unusually low columns that were comparable to 2011, the previous year with significant chemical ozone depletion. Record low values of HNO<sub>3</sub> in the FTIR dataset are in accordance with the evidence of PSCs and a denitrified atmosphere. Estimates of chemical ozone loss were derived using passive ozone from the SLIMCAT offline chemical transport model to account for dynamical contributions to the stratospheric ozone budget.</p>


2019 ◽  
Vol 19 (5) ◽  
pp. 3417-3432 ◽  
Author(s):  
Sabine Haase ◽  
Katja Matthes

Abstract. Recent observational and modeling studies suggest that stratospheric ozone depletion not only influences the surface climate in the Southern Hemisphere (SH), but also impacts Northern Hemisphere (NH) spring, which implies a strong interaction between dynamics and chemistry. Here, we systematically analyze the importance of interactive chemistry with respect to the representation of stratosphere–troposphere coupling and in particular the effects on NH surface climate during the recent past. We use the interactive and specified chemistry version of NCAR's Whole Atmosphere Community Climate Model coupled to an ocean model to investigate differences in the mean state of the NH stratosphere as well as in stratospheric extreme events, namely sudden stratospheric warmings (SSWs), and their surface impacts. To be able to focus on differences that arise from two-way interactions between chemistry and dynamics in the model, the specified chemistry model version uses a time-evolving, model-consistent ozone field generated by the interactive chemistry model version. We also test the effects of zonally symmetric versus asymmetric prescribed ozone, evaluating the importance of ozone waves in the representation of stratospheric mean state and variability. The interactive chemistry simulation is characterized by a significantly stronger and colder polar night jet (PNJ) during spring when ozone depletion becomes important. We identify a negative feedback between lower stratospheric ozone and atmospheric dynamics during the breakdown of the stratospheric polar vortex in the NH, which contributes to the different characteristics of the PNJ between the simulations. Not only the mean state, but also stratospheric variability is better represented in the interactive chemistry simulation, which shows a more realistic distribution of SSWs as well as a more persistent surface impact afterwards compared with the simulation where the feedback between chemistry and dynamics is switched off. We hypothesize that this is also related to the feedback between ozone and dynamics via the intrusion of ozone-rich air into polar latitudes during SSWs. The results from the zonally asymmetric ozone simulation are closer to the interactive chemistry simulations, implying that under a model-consistent ozone forcing, a three-dimensional (3-D) representation of the prescribed ozone field is desirable. This suggests that a 3-D ozone forcing, as recommended for the upcoming CMIP6 simulations, has the potential to improve the representation of stratospheric dynamics and chemistry. Our findings underline the importance of the representation of interactive chemistry and its feedback on the stratospheric mean state and variability not only in the SH but also in the NH during the recent past.


2004 ◽  
Vol 12 (1) ◽  
pp. 1-70 ◽  
Author(s):  
S Perin ◽  
D RS Lean

Depletion of stratospheric ozone, the principal atmospheric attenuator of ultraviolet-B (UVB) radiation, by man-made chemicals has raised scientific and public concern regarding the biological effects of increased UVB radiation on Earth. There is an increased awareness that existing levels of solar UV radiation have an important influence on biological and chemical processes in aquatic ecosystems. For aquatic organisms, numerous studies have shown direct detrimental effects of UVB radiation at each trophic level. Fortunately, many aquatic organisms also possess a range of photoprotective mechanisms against UV radiation toxicity. In addition to its direct impact, harmful effects of UVB radiation at a single-trophic level can cascade through the food web and indirectly affect organisms from other trophic levels. Because UV radiation photochemically reacts with humic substances and other photosensitive agents in the water, increases in solar UVB can also indirectly affect aquatic organisms through the production and (or) release of different photoproducts like biologically available nutrients and harmful reactive oxygen species. Polar aquatic ecosystems have been of particular concern, since stratospheric ozone-related UVB increases have been the greatest in these regions. With the influences of climate warming and the possibility of future volcanic eruptions, ozone losses are expected to get worse in the Arctic stratosphere, and the ozone layer recovery may not follow the slow decline of industrial ozone-depleting compounds in the atmosphere. Climate warming is also expected to bring important changes in underwater ultraviolet radiation (UVR) penetration in Arctic freshwaters that would be more significant to the aquatic biota than stratospheric ozone depletion.Key words: Arctic, UV radiation, UVB, ozone depletion, climate change, aquatic ecosystems.


2017 ◽  
Vol 30 (8) ◽  
pp. 2905-2919 ◽  
Author(s):  
Jiankai Zhang ◽  
Fei Xie ◽  
Wenshou Tian ◽  
Yuanyuan Han ◽  
Kequan Zhang ◽  
...  

The influence of the Arctic Oscillation (AO) on the vertical distribution of stratospheric ozone in the Northern Hemisphere in winter is analyzed using observations and an offline chemical transport model. Positive ozone anomalies are found at low latitudes (0°–30°N) and there are three negative anomaly centers in the northern mid- and high latitudes during positive AO phases. The negative anomalies are located in the Arctic middle stratosphere (~30 hPa; 70°–90°N), Arctic upper troposphere–lower stratosphere (UTLS; 150–300 hPa, 70°–90°N), and midlatitude UTLS (70–300 hPa, 30°–60°N). Further analysis shows that anomalous dynamical transport related to AO variability primarily controls these ozone changes. During positive AO events, positive ozone anomalies between 0° and 30°N at 50–150 hPa are related to the weakened meridional transport of the Brewer–Dobson circulation (BDC) and enhanced eddy transport. The negative ozone anomalies in the Arctic middle stratosphere are also caused by the weakened BDC, while the negative ozone anomalies in the Arctic UTLS are caused by the increased tropopause height, weakened BDC vertical transport, weaker exchange between the midlatitudes and the Arctic, and enhanced ozone depletion via heterogeneous chemistry. The negative ozone anomalies in the midlatitude UTLS are mainly due to enhanced eddy transport from the midlatitudes to the latitudes equatorward of 30°N, while the transport of ozone-poor air from the Arctic to the midlatitudes makes a minor contribution. Interpreting AO-related variability of stratospheric ozone, especially in the UTLS, would be helpful for the prediction of tropospheric ozone variability caused by the AO.


2011 ◽  
Vol 11 (16) ◽  
pp. 8471-8487 ◽  
Author(s):  
F. Khosrawi ◽  
J. Urban ◽  
M. C. Pitts ◽  
P. Voelger ◽  
P. Achtert ◽  
...  

Abstract. The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR). This was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001–2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible formation mechanism during that particular winter that may have caused the denitrification observed in mid January. In contrast, the denitrification that was observed in the beginning of January could have been caused by the sedimentation of NAT particles that formed on mountain wave ice clouds.


2015 ◽  
Vol 15 (5) ◽  
pp. 2269-2293 ◽  
Author(s):  
K. Lefever ◽  
R. van der A ◽  
F. Baier ◽  
Y. Christophe ◽  
Q. Errera ◽  
...  

Abstract. This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses delivered by BASCOE are found to have the best quality among the three systems resolving the vertical dimension, with biases not exceeding 10% all year long, at all stratospheric levels and in all latitude bands, except in the tropical lowermost stratosphere. The northern spring 2011 period is studied in more detail to evaluate the ability of the analyses to represent the exceptional ozone depletion event, which happened above the Arctic in March 2011. Offline sensitivity tests are performed during this month and indicate that the differences between the forward models or the assimilation algorithms are much less important than the characteristics of the assimilated data sets. They also show that IFS-MOZART is able to deliver realistic analyses of ozone both in the troposphere and in the stratosphere, but this requires the assimilation of observations from nadir-looking instruments as well as the assimilation of profiles, which are well resolved vertically and extend into the lowermost stratosphere.


2008 ◽  
Vol 8 (2) ◽  
pp. 4911-4947
Author(s):  
B. Vogel ◽  
P. Konopka ◽  
J.-U. Grooß ◽  
R. Müller ◽  
B. Funke ◽  
...  

Abstract. Satellite observations show that the enormous solar proton events (SPEs) in October–November 2003 had significant effects on the composition of the stratosphere and mesosphere in the polar regions. After the October–November 2003 SPEs and in early 2004 significant enhancements of NOx(=NO+NO2) in the upper stratosphere and lower mesosphere in the Northern Hemisphere were observed by several satellite instruments. Here we present global full chemistry calculations performed with the CLaMS model to study the impact of mesospheric NOx intrusions on Arctic polar ozone loss processes in the stratosphere. Several model simulations are preformed with different upper boundary conditions for NOx at 2000 K potential temperature (≈50 km altitude). In our study we focus on the impact of the non-local production of NOx which means the downward transport of enhanced NOx from the mesosphere in the stratosphere. The local production of NOx in the stratosphere is neglected. Our findings show that intrusions of mesospheric air into the stratosphere, transporting high burdens of NOx, affect the composition of the Arctic polar region down to about 400 K (≈17–18 km). We compare our simulated NOx and O3 mixing ratios with satellite observations by ACE-FTS and MIPAS processed at IMK/IAA and derive an upper limit for the ozone loss caused by enhanced mesospheric NOx. Our findings show that in the Arctic polar vortex (Equivalent Lat.>70° N) the accumulated column ozone loss between 350–2000 K potential temperature (≈14–50 km altitude) caused by the SPEs in October–November 2003 in the stratosphere is up to 3.3 DU with an upper limit of 5.5 DU until end of November. Further we found that about 10 DU but lower than 18 DU accumulated ozone loss additionally occurs until end of March 2004 caused by the transport of mesospheric NOx-rich air in early 2004. In the lower stratosphere (350–700 K≈14–27 km altitude) the SPEs of October–November 2003 have negligible small impact on ozone loss processes until end of November and the mesospheric NOx intrusions in early 2004 yield ozone loss about 3.5 DU, but clearly lower than 6.5 DU until end of March. Overall, the non-local production of NOx is an additional variability to the existing variations of the ozone loss observed in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document