Future global crop production increases by adapting crop phenology to local climate change

Author(s):  
Sara Minoli ◽  
Jonas Jägermeyr ◽  
Senthold Asseng ◽  
Christoph Müller

<p>Broad evidence is pointing at possible adverse impacts of climate change on crop yields. Due to scarce information about farming management practices, most global-scale studies, however, do not consider adaptation strategies.</p><p>Here we integrate models of farmers' decision making with crop biophysical modeling at the global scale to investigate how accounting for adaptation of crop phenology affects projections of future crop productivity under climate change. Farmers in each simulation unit are assumed to adapt crop growing periods by continuously selecting sowing dates and cultivars that match climatic conditions best. We compare counterfactual management scenarios, assuming crop calendars and cultivars to be either the same as in the reference climate – as often assumed in previous climate impact assessments – or adapted to future climate.</p><p>Based on crop model simulations, we find that the implementation of adapted growing periods can substantially increase (+15%) total crop production in 2080-2099 (RCP6.0). In general, summer crops are responsive to both sowing and harvest date adjustments, which result in overall longer growing periods and improved yields, compared to production systems without adaptation of growing periods. Winter wheat presents challenges in adapting to a warming climate and requires region-specific adjustments to pre and post winter conditions. We present a systematic evaluation of how local and climate-scenario specific adaptation strategies can enhance global crop productivity on current cropland. Our findings highlight the importance of further research on the readiness of required crop varieties.</p>

2020 ◽  
Author(s):  
Yang Su ◽  
Benoît Gabrielle ◽  
David Makowski

Abstract Conservation agriculture (CA) is being promoted as a set of management practices that can sustain crop production while providing positive environmental externalities. However, its impact on crop productivity is still hotly debated, and how this productivity will be affected by climate change remains uncertain. Here we compared the productivity of CA vs. conventional tillage (CT) systems under current and future climate conditions using a probabilistic machine-learning approach at the global scale. We reveal large differences in the probability of yield gains with CA across crop types, climate zones, and geographical regions. We show that, for most crops, CA performed better in continental, arid and temperate regions than in tropical ones. Under future climate conditions, the relative productive performance of CA is expected to increase for maize in almost all cropping areas within the tropical band, thus improving the competitiveness of CA for this major crop.


2018 ◽  
Vol 10 (8) ◽  
pp. 2665 ◽  
Author(s):  
Kieu N. Le ◽  
Manoj K. Jha ◽  
Jaehak Jeong ◽  
Philip W. Gassman ◽  
Manuel R. Reyes ◽  
...  

Will soil organic carbon (SOC) and yields increase for conservation management systems in tropical zones in response to the next 100 years? To answer the question, the Environmental Policy Integrated Climate (EPIC) model was used to study the effects of climate change, cropping systems, conservation agriculture (CA) and conservation tillage management practices on SOC and crop productivity in Kampong Cham, Cambodia. The EPIC model was successfully calibrated and validated for crop yields, biomass, SOC and nitrogen based on field data from a five-year field experiment. Historical weather (1994–2013) was used for baseline assessment versus mid-century (2046–2064) and late-century (2081–2100) climate projections generated by the Geophysical Fluids Dynamics Laboratory (GFDL) CM2.1 global climate model. The simulated results showed that upland rice yield would increase the most under the B1 scenario in mid-century for all treatments, followed by soybean and maize. Cassava yield only increased under CA treatment when cultivated as a continuous primary crop. Carbon sequestration was more sensitive to cropping systems and crop rotation than climate change. The results indicated that the rotated CA primary crop (maize) systems should be prioritized for SOC sequestration as well as for increasing crop productivity. In addition, rice systems may increase SOC compared to soybean and cassava.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 97
Author(s):  
Adnan Arshad ◽  
Muhammad Ali Raza ◽  
Yue Zhang ◽  
Lizhen Zhang ◽  
Xuejiao Wang ◽  
...  

Year to year change in weather poses serious threats to agriculture globally, especially in developing countries. Global climate models simulate an increase in global temperature between 2.9 to 5.5 °C till 2060, and crop production is highly vulnerable to climate warming trends. Extreme temperature causes a significant reduction in crop yields by negatively regulating the crop phenology. Therefore, to evaluate warming impact on cotton (Gossypium hirsutum L.) production and management practices, we quantified agrometeorological data of 30 years by applying multiple crop modelling tools to compute the expected rise in temperature, impact of crop phenology, yield loss, provision of agrometeorology-services, agronomic technologies, and adaptation to climate-smart agriculture. Model projections of 15 agrometeorology stations showed that the growing duration of the sowing-boll opening and sowing-harvesting stages was reduced by 2.30 to 5.66 days decade−1 and 4.23 days decade−1, respectively, in Pakistan. Temperature rise in China also advanced the planting dates, sowing emergence, 3–5 leaves, budding anthesis, full-bloom, cleft-boll, boll-opening, and boll-opening filling by 24.4, 26.2, 24.8, 23.3, 22.6, 15.8, 14.6, 5.4, 2.9, and 8.0 days. Furthermore, present findings exhibited that the warming effect of sowing-harvest time was observed 2.16 days premature, and delayed for 8.2, 2.4, and 5.3 days in the 1970s, 1980s, and 1990s in China. APSIM-cotton quantification revealed that the sowing, emergence, flowering, and maturity stages were negatively correlated with temperature −2.03, −1.93, −1.09, and −0.42 days °C−1 on average, respectively. This study also provided insight into the adaptation of smart and better cotton by improving agrotechnological services.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2011 ◽  
Vol 62 (3) ◽  
pp. 223 ◽  
Author(s):  
Allison Aldous ◽  
James Fitzsimons ◽  
Brian Richter ◽  
Leslie Bach

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Author(s):  
Emmanuel Nyadzi

Abstract Indigenous people are often considered victims of climate change impact rather than agents of adaptation. Emerging studies in Africa have shifted the attention to indigenous knowledge (IK) to support the development of effective climate change adaptation strategies. This study adopted a systematic literature review methodology to analyse the following: (i) characterization of IK, (ii) potential of IK for knowledge co-production, (iii) IK for climate change causes and impact identification, (iv) IK for formulating and implementing climate change interventions, and (v) documentation and conservation of IK as a resource for climate change adaptation. Results show that there is no consensus on the definition of IK. However, certain identical elements in the available definitions are relevant for contextualization. IK has been useful in the formulation of different climate change adaptation strategies: management practices, early warning, and risk and disaster management. IK has the potential for knowledge co-production relevant for developing robust adaptation measures. Weather and climate services remain a critical area where IK and scientific knowledge (SK) are integrated to enhance forecast reliability and acceptability for local communities. IK is disappearing because of modernization and rural-urban migration, changing landscape and shifting religious beliefs. We suggest the need for more research into the complexity of the IK, proper documentation and storage of IK, and developing effective approaches to integrate IK with SK such that it is well received among researchers and policymakers. While doing this, it is important to maintain the unique features that distinguish IK from other forms of knowledge.


Sign in / Sign up

Export Citation Format

Share Document