Two different basalt provinces (MORB vs. WPB) in the evaporitic Permian Haselgebirge Formation (Eastern Alps, Austria) and possible tectonic implications

Author(s):  
Christoph Leitner

<p>The evaporitic Haselgebirge Formation hosts in many places small occurrences of basaltic rocks. The geochemistry of these basalts can potentially provide information about the tectonic setting of the Haselgebirge Formation and the evolution of the Meliata ocean, respectively. We present here 70 new XRF analyses of these basaltic rocks from various localities (Pfennigwiese, Annaberg, Wienern, Hallstatt, Moosegg, Lammertal) and compare the results with previous data from local studies (GRUBER et al., 1991; KIRCHNER 1979; KIRCHNER 1980a; KIRCHNER 1980b; KRALIK et al, 1984; LEITNER et al., 2017; SCHORN et al., 2013; ZIEGLER, 2014; ZIRKL, 1957). Based on the concentrations of immobile trace elements (Zr, Nb, Y, Ti), a predominance of MORB-like compositions is observed for the Lower Austrian occurrences and for the locality Wienern (Grundlsee). On contrast, basalts from the localities Lammertal, Moosegg and Hallstatt have predominantly within-plate-type compositions.</p><p>We discuss this striking regional (east-west) difference of basalt types in terms of existing palinspastic models for the Haselgebirge formation (LEITNER et al., 2017; STAMPFLI & BOREL, 2002; McCANN et al., 2006).</p><p> </p><p>GRUBER, P., FAUPL, P., KOLLER, F. (1991) Mitt. Österr. Miner. Ges., 84, 77-100.</p><p>KIRCHNER, E. (1979) Tschermaks Min. Petr. Mitt. 26, 149-162.</p><p>KIRCHNER, E. (1980a) Mitt. Österr. Miner. Ges.71/72, 385-396.</p><p>KIRCHNER, E. (1980b) Verh. Geol. Bundesanstalt 1980, 249-279.</p><p>KRALIK, M., KOLLER, F., POBER, E. (1984) Mitt. Österr. Miner. Ges., 77, 37-55.</p><p>LEITNER, C., WIESMAIER, S., KÖSTER, M.H., GILG, H.A, FINGER, F, NEUBAUER, F. (2017) GSA Bulletin 129, 1537-1553.</p><p>McCANN, T., PASCAL, C., TIMMERMAN, M.J., KRZYWIEC, P., LÓPEZ-GÓMEZ, J., WETZEL, L., KRAWCZYK, C.M., RIEKE, H., LAMARCH, J. (2006) Mem. Geol. Soc. London, 32, 355-388.</p><p>SCHORN A, NEUBAUER F, GENSER J, BERNROIDER M (2013) Tectonophysics 583, 28-48.</p><p>STAMPFLI G.M., BOREL G.D. (2002) Earth Planet. Sci. Lett. 196, 17-33.</p><p>ZIEGLER, T. (2014) Unpubl. MSc thesis University of Salzburg, p. 174.</p><p>ZIRKL, E.J. (1957) Jb. Geol. Bundesanstalt 100, 10-137-177.</p>

2006 ◽  
Vol 6 (5) ◽  
pp. 8781-8815 ◽  
Author(s):  
P. Gabrielli ◽  
G. Cozzi ◽  
S. Torcini ◽  
P. Cescon ◽  
C. Barbante

Abstract. Trace elements concentrations were determined in shallow snow samples from 21 sites in the Italian Eastern Alps in order to identify the sources of the contaminants present in the tropospheric winter boundary layer. The collection of superficial snow layers was carried out weekly at altitudes between 1000 and 3000 m next to meteorological stations, far away from villages, roads and ski slopes. Ultra clean procedures were adopted in order to avoid contamination of the snow during the different experimental phases. Trace elements (Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn) were determined by Inductively Coupled Plasma Sector Field Mass Spectrometer (ICP-SFMS). Ancillary parameters such as major ions (SO42−, NO3−, Ca2+;, Mg2+, K


Author(s):  
S. W. Richards ◽  
W. J. Collins

ABSTRACTCombined field and geophysical data show that plutons from the Bega Batholith are elongate, meridional, wedge-shaped bodies which intruded during a period of regional east–west extension in the Palaeozoic eastern Lachlan orogen, eastern Australia. Plutons within the core of the batholith have intruded coeval, syn-rift sediments and co-magmatic volcanics. The batholith is bound by high-temperature, dip-slip faults, and contains several major NE-trending transtensional faults which were active during batholith construction. In the central part of the batholith, the Kameruka pluton is an asymmetric, eastward-thickening, wedge-shaped body with the base exposed as the western contact, which is characterised by abundant, shallow-dipping schlieren migmatites which contain recumbent folds and extensional shear bands. A shallow (<30°), east-dipping, primary magmatic layering in the Kameruka pluton steepens progressively westward, where it becomes conformable to the east-dipping basal migmatites. The systematic steepening of the layering is comparable to sedimentary units formed during floor depression in syn-rift settings. The present authors suggest that the wedge-shaped plutons of the Bega Batholith are the deeper, plutonic expression of a hot, active rift. The batholith was fed and sustained by injection of magma through sub-vertical dykes. Displacement along syn-magmatic, NE-trending faults suggests up to 25 km of arc-perpendicular extension during batholith construction. The inferred tectonic setting for batholith emplacement is a continental back-arc, where modern half-extension rates of 20–40 mm yr−1 are not unusual, and are sufficient to emplace the entire batholith in ∼1 Ma. This structural model provides a mechanism for the emplacement of some wedge-shaped plutons and is one solution to the ‘room problem’ of batholith emplace


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Sihua Yuan ◽  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Boran Liu ◽  
...  

Abstract The Grobgneis complex, located in the eastern Austroalpine unit of the Eastern Alps, exposes large volumes of pre-Alpine porphyric metagranites, sometimes associated with small gabbroic bodies. To better understand tectonic setting of the metagranites, we carried out detailed geochronological and geochemical investigations on the major part of the porphyric metagranites. LA–ICP–MS zircon U–Pb dating of three metagranites sampled from the Grobgneis complex provides the first reliable evidence for large volumes of Permian plutonism within the pre-Alpine basement of the Lower Austroalpine units. Concordant zircons from three samples yield ages at 272.2 ± 1.2 Ma, 268.6 ± 2.3 Ma and 267.6 ± 2.9 Ma interpreted to date the emplacement of the granite suite. In combination with published ages for other Permian Alpine magmatic bodies, the new U–Pb ages provide evidence of a temporally restricted period of plutonism (“Grobgneis”) in the Raabalpen basement Complex during the Middle Permian. Comparing the investigated basement with that of the West Carpathian basement, we argue that widespread Permian granite magmatism occurred in the Lower Austroalpine units. They belong to the high-K calc-alkaline to shoshonitic S-type series on the base of geochemical data. Zircon Hf isotopic compositions of the Grobgneis metagranites show εHf(t) values of − 4.37 to − 0.6, with TDM2 model ages of 1.31–1.55 Ga, indicating that their protoliths were derived by the recycling of older continental crust. We suggest that the Permian granitic and gabbroic rocks are considered as rifted-related rocks in the Lower Austroalpine units and are contemporaneous with cover sediments.


1996 ◽  
Vol 8 (1) ◽  
pp. 85-104 ◽  
Author(s):  
E. V. Mikhalsky ◽  
J. W. Sheraton ◽  
A. A. Laiba ◽  
B. V. Beliatsky

Fisher Massif consists of Mesoproterozoic (c. 1300 Ma) lower amphibolite-facies metavolcanic rocks and associated metasediments, intruded by a variety of subvolcanic and plutonic bodies (gabbro to granite). It differs in both composition and metamorphic grade from the rest of the northern Prince Charles Mountains, which were metamorphosed to granulite facies about 1000 m.y. ago. The metavolcanic rocks consist mainly of basalt, but basaltic andesite, andesite, and more felsic rocks (dacite, rhyodacite, and rhyolite) are also common. Most of the basaltic rocks have compositions similar to low-K island arc tholeiites, but some are relatively Nb-rich and more akin to P-MORB. Intermediate to felsic medium to high-K volcanic rocks, which appear to postdate the basaltic succession, have calc-alkaline affinities and probably include a significant crustal component. On the present data, an active continental margin with associated island arc was the most likely tectonic setting for generation of the Fisher Massif volcanic rocks.


1989 ◽  
Vol 26 (6) ◽  
pp. 1282-1296 ◽  
Author(s):  
J. Dostal ◽  
R. A. Wilson ◽  
J. D. Keppie

Siluro-Devonian volcanic rocks of the northwestern mainland Appalachians are found mainly in the Tobique belt of New Brunswick where they consist predominantly of bimodal mafic–felsic suites erupted in a continental-rift environment. The axis of the Tobique rift trends north-northeast – south-southwest, obliquely to the regional northeast–southwest trend of the Appalachians. These geometric relationships are interpreted as being the result of rifting in a sinistral shear regime produced during emplacement of the Avalon terrene. The basaltic rocks are continental tholeiites and transitional basalts derived from a heterogeneous upper-mantle source that was enriched in incompatible elements relative to the primordial mantle. The mantle source was probably affected by the subduction processes.


1987 ◽  
Vol 24 (6) ◽  
pp. 1120-1134 ◽  
Author(s):  
Paul J. Sylvester ◽  
Kodjo Attoh ◽  
Klaus J. Schulz

The tectono-stratigraphic relationships, depositional environments, rock associations, and major- and trace-element compositions of the late Archean (2744–2696 Ma) bimodal basalt–rhyolite volcanic rocks of the Michipicoten (Wawa) greenstone belt, Ontario, are compatible with an origin along a convergent plate margin that varied laterally from an immature island arc built on oceanic crust to a more mature arc underlain by continental crust. This environment is similar to that of the Cenozoic Taupo–Kermadec–Tonga volcanic zone. Michipicoten basaltic rocks, most of which are proximal deposits compositionally similar ([La/Yb]n = 0.63–1.18) to modern oceanic island-arc tholeiites, are interpreted as having formed along the largely submerged island arc. Voluminous Michipicoten rhyolitic pyroclastic rocks ([La/Yb]n = 4.3–18.7, Ybn = 5.7–15.9) probably erupted subaerially from the continental arc, with distal facies deposited subaqueously on the adjacent oceanic island arc and proximal facies deposited in subaerial and shallow subaqueous environments on, or along the flanks of, the continental arc. The compositional similarity between the lower (2744 Ma) and upper (2696 Ma) volcanic sequences of the belt suggests that this island- and continental-arc configuration existed for at least 45 Ma. The Michipicoten belt may be a remnant of a larger, laterally heterogeneous volcanic terrane that also included the Abitibi greenstone belt.


Sign in / Sign up

Export Citation Format

Share Document