Tectonic setting of late Archean bimodal volcanism in the Michipicoten (Wawa) greenstone belt, Ontario

1987 ◽  
Vol 24 (6) ◽  
pp. 1120-1134 ◽  
Author(s):  
Paul J. Sylvester ◽  
Kodjo Attoh ◽  
Klaus J. Schulz

The tectono-stratigraphic relationships, depositional environments, rock associations, and major- and trace-element compositions of the late Archean (2744–2696 Ma) bimodal basalt–rhyolite volcanic rocks of the Michipicoten (Wawa) greenstone belt, Ontario, are compatible with an origin along a convergent plate margin that varied laterally from an immature island arc built on oceanic crust to a more mature arc underlain by continental crust. This environment is similar to that of the Cenozoic Taupo–Kermadec–Tonga volcanic zone. Michipicoten basaltic rocks, most of which are proximal deposits compositionally similar ([La/Yb]n = 0.63–1.18) to modern oceanic island-arc tholeiites, are interpreted as having formed along the largely submerged island arc. Voluminous Michipicoten rhyolitic pyroclastic rocks ([La/Yb]n = 4.3–18.7, Ybn = 5.7–15.9) probably erupted subaerially from the continental arc, with distal facies deposited subaqueously on the adjacent oceanic island arc and proximal facies deposited in subaerial and shallow subaqueous environments on, or along the flanks of, the continental arc. The compositional similarity between the lower (2744 Ma) and upper (2696 Ma) volcanic sequences of the belt suggests that this island- and continental-arc configuration existed for at least 45 Ma. The Michipicoten belt may be a remnant of a larger, laterally heterogeneous volcanic terrane that also included the Abitibi greenstone belt.


1996 ◽  
Vol 8 (1) ◽  
pp. 85-104 ◽  
Author(s):  
E. V. Mikhalsky ◽  
J. W. Sheraton ◽  
A. A. Laiba ◽  
B. V. Beliatsky

Fisher Massif consists of Mesoproterozoic (c. 1300 Ma) lower amphibolite-facies metavolcanic rocks and associated metasediments, intruded by a variety of subvolcanic and plutonic bodies (gabbro to granite). It differs in both composition and metamorphic grade from the rest of the northern Prince Charles Mountains, which were metamorphosed to granulite facies about 1000 m.y. ago. The metavolcanic rocks consist mainly of basalt, but basaltic andesite, andesite, and more felsic rocks (dacite, rhyodacite, and rhyolite) are also common. Most of the basaltic rocks have compositions similar to low-K island arc tholeiites, but some are relatively Nb-rich and more akin to P-MORB. Intermediate to felsic medium to high-K volcanic rocks, which appear to postdate the basaltic succession, have calc-alkaline affinities and probably include a significant crustal component. On the present data, an active continental margin with associated island arc was the most likely tectonic setting for generation of the Fisher Massif volcanic rocks.



1977 ◽  
Vol 14 (4) ◽  
pp. 539-550 ◽  
Author(s):  
A. J. Naldrett ◽  
A. M. Goodwin

Six hundred and ninety samples of volcanic rocks from the Blake River Group of the Abitibi Greenstone Belt have analysed for sulfur on a Leco sulfur analyser. Basaltic rocks have been subdivided into komatiites, Fe-rich tholeiites, Al-rich basalts, and intermediate basalts with more than 1% TiO2 and with less than 1% TiO2. Andesites have been subdivided into Fe-rich types, Al-rich types, and others. All dacites are grouped together as are all rhyolites. Rocks of many of these subdivisions occur at more than one level within the Blake River stratigraphy. Within a given rock subdivision, the sulfur content is distributed log normally. When the geometric mean of the sulfur content of each of the subdivisions outlined above is plotted against the arithmetic mean of the FeO content, a smooth curve is obtained, with sulfur increasing markedly with increase in FeO. The data give no indication of any change in sulfur content of a given rock subdivision with stratigraphic height. The arithmetic mean of the sulfur content of each rock subdivision also increases with the mean FeO content, although less smoothly than the geometric mean. The arithmetic means of sulfur content fall within the scatter of points obtained experimentally for the sulfur content of sulfur saturated basalts, supporting the contention that the Blake River rocks may have been saturated with sulfur at the time of their extrusion.



2000 ◽  
Vol 101 (1) ◽  
pp. 25-47 ◽  
Author(s):  
Didier Béziat ◽  
François Bourges ◽  
Pierre Debat ◽  
Martin Lompo ◽  
François Martin ◽  
...  


1999 ◽  
Vol 36 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Ralf O Maxeiner ◽  
Tom II Sibbald ◽  
William L Slimmon ◽  
Larry M Heaman ◽  
Brian R Watters

This paper describes the geology, geochemistry, and age of two amphibolite facies volcano-plutonic assemblages in the southern Hanson Lake Block and southeastern Glennie Domain of the Paleoproterozoic Trans-Hudson Orogen of east-central Saskatchewan. The Hanson Lake assemblage comprises a mixed suite of subaqueous to subaerial dacitic to rhyolitic (ca. 1875 Ma) and intercalated minor mafic volcanic rocks, overlain by greywackes. Similarly with modern oceanic island arcs, the Hanson Lake assemblage shows evolution from primitive arc tholeiites to evolved calc-alkaline arc rocks. It is intruded by younger subvolcanic alkaline porphyries (ca. 1861 Ma), synvolcanic granitic plutons (ca. 1873 Ma), and the younger Hanson Lake Pluton (ca. 1844 Ma). Rocks of the Northern Lights assemblage are stratigraphically equivalent to the lower portion of the Hanson Lake assemblage and comprise tholeiitic arc pillowed mafic flows and felsic to intermediate volcaniclastic rocks and greywackes, which can be traced as far west as Wapawekka Lake in the south-central part of the Glennie Domain. The Hanson Lake volcanic belt, comprising the Northern Lights and Hanson Lake assemblages, shows strong lithological, geochemical, and geochronological similarities to lithotectonic assemblages of the Flin Flon Domain (Amisk Collage), suggesting that all of these areas may have been part of a more or less continuous island arc complex, extending from Snow Lake to Flin Flon, across the Sturgeon-Weir shear zone into the Hanson Lake Block and across the Tabbernor fault zone into the Glennie Domain.



2018 ◽  
Vol 156 (4) ◽  
pp. 683-701 ◽  
Author(s):  
XINGHAI LANG ◽  
DONG LIU ◽  
YULIN DENG ◽  
JUXING TANG ◽  
XUHUI WANG ◽  
...  

AbstractJurassic sandstones in the Xiongcun porphyry copper–gold district, southern Lhasa subterrane, Tibet, China were analysed for petrography, major oxides and trace elements, as well as detrital zircon U–Pb and Hf isotopes, to infer their depositional age, provenance, intensity of source-rock palaeo-weathering and depositional tectonic setting. This new information provides important evidence to constrain the tectonic evolution of the southern Lhasa subterrane during the Late Triassic – Jurassic period. The sandstones are exposed in the lower and upper sections of the Xiongcun Formation. Their average modal abundance (Q21F11L68) classifies them as lithic arenite, which is also supported by geochemical studies. The high chemical index of alteration values (77.19–85.36, mean 79.96) and chemical index of weathering values (86.19–95.59, mean 89.98) of the sandstones imply moderate to intensive weathering of the source rock. Discrimination diagrams based on modal abundance, geochemistry and certain elemental ratios indicate that felsic and intermediate igneous rocks constitute the source rocks, probably with a magmatic arc provenance. The detrital zircon ages (161–243 Ma) and εHf(t) values (+10.5 to +16.2) further constrain the sandstone provenance as subduction-related Triassic–Jurassic felsic and intermediate igneous rocks from the southern Lhasa subterrane. A tectonic discrimination method based on geochemical data of the sandstones, as well as detrital zircon ages from sandstones, reveals that the sandstones were most likely deposited in an oceanic island-arc setting. These results support the hypothesis that the tectonic background of the southern Lhasa subterrane was an oceanic island-arc setting, rather than a continental island-arc setting, during the Late Triassic – Jurassic period.



2013 ◽  
Vol 734-737 ◽  
pp. 344-351 ◽  
Author(s):  
Deng Liu ◽  
Dai Yong Cao ◽  
Yi Wu Wang ◽  
Zhong Yuan Liu

The Early Permian volcanic-sedimentary sequences of Ongniud Banner consist mainly of andesite, rhyolite, perlite, volcanic breccia, tuff, tuffaceous sandstone, siliceous rock. Rock assemblage and sedimentary formations indicate that are of fore-arc basin sedimentary feature between subduction zone and island arc in Early Permian. The volcanic rocks from Elitu Formation have SiO2=50.23%~74.83%, Mg#=6.21~49.54, Na2O+K2O=5.27%~10.73%, Na2O/K2O=0.36~4.17, belonging to high-K cal-alkaline (HKCA)~shoshonite (SHO) series. The volcanic rocks are characterized with (La/Yb)N=5.52~9.89, moderate - intense negative Eu anomalies, LILE enrichment such as Ba, Ra, K, Th and HFSE depletion such as Ta, Nb, P, Ti, and indicating that magma could be formed in the tectonic setting of the island arc and active continental margin related to the plate subduction. R1-R2 diagram also indicates that volcanic rocks were generated at syn-collision or post-orogenic period, perhaps representing the mid-later subduction stage of the Palaeo-Asian Ocean Plate and North China Plate. Taken together, the authors suggest that the region was located still in the Palaeo-Asian Ocean, rather than the intracontinental taphrogenic trough in Early Permian.



1980 ◽  
Vol 17 (7) ◽  
pp. 888-900 ◽  
Author(s):  
G. A. Jenner ◽  
B. J. Fryer

The Snooks Arm Group of the Newfoundland Appalachians, which includes the Betts Cove ophiolite at its base, has been interpreted as oceanic crust overlain by island arc volcanic and sedimentary rocks. The limited geochemical data available on the upper Snooks Arm Group basalts have been used as evidence for and against their formation in an island arc environment.Reinvestigation of the chemistry of the basaltic rocks of the upper Snooks Arm Group establishes them as large ion lithophile enriched tholeiites. Similar basalts have been found in oceanic islands, on aseismic ridges, and possibly in back-arc basins. Chemically analogous rocks are notably lacking from island arc settings.The geochemistry and geology of the upper Snooks Arm Group suggest that these rocks may have formed in either an oceanic island setting or, as recently suggested by Upadhyay and Neale, as part of a marginal basin. It is not possible to distinguish between these alternate models, although the most similar basaltic rocks occur in the former environment. It is most unlikely that these rocks formed in an early island arc setting and indeed there may be no need for them to be associated with a major subduction zone.





2002 ◽  
Vol 39 (11) ◽  
pp. 1635-1656 ◽  
Author(s):  
Brian Cousens ◽  
Kathy Facey ◽  
Hendrik Falck

This study investigates the geochemistry and tectonic setting of the 2.66 Ga Banting Group, the younger sequence of volcanic rocks in the Yellowknife greenstone belt, and its relationship to older tholeiitic volcanic rocks of the 2.72–2.70 Ga Kam Group. The Banting Group includes a much higher proportion of felsic volcanic and volcaniclastic rocks than the Kam Group, but mafic to intermediate volcanic rocks are common. Banting basalts are tholeiitic and are melts of Archean depleted upper mantle, as are basalts of the Kam Group. In contrast, Banting dacites and rhyolites have much lower heavy rare earth element abundances and generally have higher initial 143Nd/144Nd than Kam felsic rocks. The chemistry of the felsic rocks provides a geochemical signature to distinguish rocks of Kam versus Banting age where complex structures have obscured the stratigraphy. Whereas Kam felsic rocks evolved from mafic parents by assimilation – fractional crystallization processes, Banting felsic rocks have compositions similar to Archean tonalite–trondhjemite–dacite suites, as well as modern adakites, and appear to be melts of juvenile, garnet-bearing, hydrated mafic crust, possibly underplated Kam basalts. The nearby 2.66 Ga felsic complex at Clan Lake mimics the geochemical systematics of the Banting Group, and thus Banting-like rocks may reflect a regional crustal melting event at this time.



Sign in / Sign up

Export Citation Format

Share Document