Migration of deformation, subsidence, and basin formation in the SW Pannonian Basin (central Europe) and the change to contractional deformation

Author(s):  
László Fodor ◽  
Attila Balázs ◽  
Gábor Csillag ◽  
István Dunkl ◽  
Gábor Héja ◽  
...  

<p>The Pannonian Basin is a continental extensional basin system with various depocentres within the Alpine–Carpathian–Dinaridic orogenic belt. Along the western basin margin, exhumation along the Rechnitz, Pohorje, Kozjak, and Baján detachments resulted in cooling of diverse crustal segments of the Alpine nappe stack (Koralpe-Wölz and Penninic nappes); the process is constrained by variable thermochronological data between ~25–23 to ~15 Ma. Rapid subsidence in supradetachment sub-basins indicates the onset of sedimentation in the late Early Miocene (Ottnangian? or Karpatian, from ~19 or 17.2 Ma). In addition to extensional structures, strike-slip faults mostly accommodated differential extension between domains marked by large low-angle normal faults. Branches of the Mid-Hungarian Shear Zone (MHZ) also played the role of transfer faults, although shear-zones perpendicular to extension also occurred locally.</p><p>During this period, the distal margin of the large tilted block in the hanging wall of the detachment system, the pre-Miocene rocks of the Transdanubian Range (TR) experienced surface exposure, karstification, and terrestrial sedimentation. The situation changed after ~15–14.5 Ma when faulting, subsidence, and basin formation shifted north-eastward. Migration of normal faulting resulted in fault-controlled basin subsidence within the TR which lasted until ~8 Ma.</p><p>3D thermo-mechanical lithospheric and basin-scale numerical models predict similar spatial migration of the depocenters from the orogenic margin towards the basin center. The reason for this migration is found in the interaction of deep Earth and surface processes. A lithospheric and smaller crustal-scale weak zones inherited from a preceding orogenic structure localize initial deformation, while their redistribution controls asymmetric extension accompanied by the upraising of the asthenopshere and flexure of the lithosphere. Models suggest ~4–5 Myr delay of the onset of sedimentation after the onset of crustal extension and ~150–200 km of shift in depocenters during ~12 Myr. These modeling results agree well with our robust structural and chronological data on basin migration.</p><p>Simultaneously with or shortly after depocenter migration, the southern part of the former rift system, mostly near the MHZ, underwent ~N–S shortening; the basin fill was folded and the boundary normal faults were inverted. The style of deformation changed from pure contraction to transpression. The Baján detachment could be slightly folded, although its synformal shape could also be considered a detachment corrugation. Deformation was dated to ~15–14 Ma (middle Badenian) in certain sub-basins while in other sub-basins deformation seems to be continuous throughout the late Middle Miocene from ~15 Ma to ~11.6 Ma.</p><p>Another contractional pulse occurred in the earliest Late Miocene, between ~11.6 and ~9.7 Ma while the western part of the TR was still affected by extensional faulting and subsidence. All these contractional deformations can be linked to the much larger fold-and-thrust belt that extends from the Southern and Julian Alps through the Sava folds region in Slovenia. Contraction is still active, as indicated by recent earthquakes in Croatia.</p><p>Mol Ltd. largely supported the research. The research is supported by the scientific grant NKFI OTKA 134873 and the Slovenian Research Agency (research core funding No. P1-0195).</p>

Geosphere ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1577-1597
Author(s):  
Andrew S. Canada ◽  
Elizabeth J. Cassel ◽  
Allen J. McGrew ◽  
M. Elliot Smith ◽  
Daniel F. Stockli ◽  
...  

Abstract Within extended orogens, records that reflect the driving processes and dynamics of early extension are often overprinted by subsequent orogenic collapse. The Copper Mountains of northeastern Nevada preserve an exceptional record of hinterland extensional deformation and high-elevation basin formation, but current geochronology and thermochronology are insufficient to relate this to broader structural trends in the region. This extension occurred concurrent with volcanism commonly attributed to Farallon slab removal. We combine thermochronology of both synextensional hanging-wall strata and footwall rocks to comprehensively evaluate the precise timing and style of this deformation. Specifically, we apply (U-Th)/(He-Pb) double dating of minerals extracted from Eocene–Oligocene Copper Basin strata with multi-mineral (U-Th)/He and 40Ar/39Ar thermochronology of rocks sampled across an ∼20 km transect of the Copper Mountains. We integrate basement and detrital thermochronology records to comprehensively evaluate the timing and rates of hinterland extension and basin sedimentation. Cooling and U-Pb crystallization ages show the Coffeepot Stock, which spans the width of the Copper Mountains, was emplaced at ca. 109–108 Ma, and then cooled through the 40Ar/39Ar muscovite and biotite closure temperatures by ca. 90 Ma, the zircon (U-Th)/He closure temperature between ca. 90 and 70 Ma, and the apatite (U-Th)/He closure temperature between 43 and 40 Ma. Detrital apatite and zircon (U-Th)/(He-Pb) double dating of late Eocene fluvial and lacustrine strata of the Dead Horse Formation and early Oligocene fluvial strata of the Meadow Fork Formation, both deposited in Copper Basin, shows that Early Cretaceous age detrital grains have a cooling history that is analogous to proximal intrusive rocks of the Coffeepot Stock. At ca. 38 Ma, cooling and depositional ages for Copper Basin strata reveal rapid exhumation of proximal source terranes (cooling rate of ∼37 °C/m.y.); in these terranes, 8–12 km of slip along the low-angle Copper Creek normal fault exhumed the Coffeepot Stock in the footwall. Late Eocene–early Oligocene slip along this fault and an upper fault splay, the Meadow Fork fault, created a half graben that accommodated ∼1.4 km of volcaniclastic strata, including ∼20 m of lacustrine strata that preserve the renowned Copper Basin flora. Single-crystal sanidine 40Ar/39Ar geochronology of interbedded tuffs in Copper Basin constrains the onset of rapid exhumation to 38.0 ± 0.9 Ma, indicating that surface-breaching extensional deformation was coincident with intense proximal volcanism. Coarse-grained syndeformational sediments of the Oligocene Meadow Fork Formation were deposited just prior to formation of an extensive regional Oligocene–Miocene unconformity and represent one of the most complete hinterland stratigraphic records of this time. We interpret this history of rapid late Eocene exhumation across the Copper Mountains, coeval volcanism, and subsequent unconformity formation to reflect dynamic and thermal effects associated with Farallon slab removal. The final phase of extension is recorded by late, high-angle normal faults that cut and rotate the early middle Miocene Jarbidge Rhyolite sequence, deposited unconformably in the hanging wall. These results provide an independent record of episodic Paleogene to Miocene exhumation documented in Cordilleran metamorphic core complexes and establish that substantial extension occurred locally in the hinterland prior to province-wide Miocene extensional break-up.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Lukas Nibourel ◽  
Alfons Berger ◽  
Daniel Egli ◽  
Stefan Heuberger ◽  
Marco Herwegh

AbstractThe thermo-kinematic evolution of the eastern Aar Massif, Swiss Alps, was investigated using peak temperature data estimated from Raman spectroscopy of carbonaceous material and detailed field analyses. New and compiled temperature-time constraints along the deformed and exhumed basement-cover contact allow us to (i) establish the timing of metamorphism and deformation, (ii) track long-term horizontal and vertical orogenic movements and (iii) assess the influence of temperature and structural inheritance on the kinematic evolution. We present a new shear zone map, structural cross sections and a step-wise retrodeformation. From $$\text{ca.\;26\,Ma}$$ ca.\;26\,Ma onwards, basement-involved deformation started with the formation of relatively discrete NNW-directed thrusts. Peak metamorphic isograds are weakly deformed by these thrusts, suggesting that they initiated before or during the metamorphic peak under ongoing burial in the footwall to the basal Helvetic roof thrust. Subsequent peak- to post-metamorphic deformation was dominated by steep, mostly NNW-vergent reverse faults ($$\text{ca.}$$ ca.  22–14 Ma). Field investigations demonstrate that these shear zones were steeper than $$50^{\circ}$$ 50 ∘ already at inception. This produced the massif-internal structural relief and was associated with large vertical displacements (7 km shortening vs. up to 11 km exhumation). From 14 Ma onwards, the eastern Aar massif exhumed “en bloc” (i.e., without significant differential massif-internal exhumation) in the hanging wall of frontal thrusts, which is consistent with the transition to strike-slip dominated deformation observed within the massif. Our results indicate 13 km shortening and 9 km exhumation between 14 Ma and present. Inherited normal faults were not significantly reactivated. Instead, new thrusts/reverse faults developed in the basement below syn-rift basins, and can be traced into overturned fold limbs in the overlying sediment, producing tight synclines and broad anticlines along the basement-cover contact. The sediments were not detached from their crystalline substratum and formed disharmonic folds. Our results highlight decreasing rheological contrasts between (i) relatively strong basement and (ii) relatively weak cover units and inherited faults at higher temperature conditions. Both the timing of basement-involved deformation and the structural style (shear zone dip) appear to be controlled by evolving temperature conditions.


2019 ◽  
pp. 5-30 ◽  
Author(s):  
Elena Konstantinovskaya ◽  
Gennady Ivanov ◽  
Jean-Louis Feybesse ◽  
Jean-Luc Lescuyer

The west-verging fold and thrust belt of the Central Labrador Trough originated as a part of the New Quebec Orogen from rift inversion as a result of oblique collision and dextral transpression between the Archean Superior craton and the Archean block of the Core Zone during the Trans-Hudson orogeny (1.82−1.77 Ga). The structures associated with dextral transpression are well established in the northern segment of the orogen but not in the central part. We present new field structural observations along the ca. 70 km long W−E Minowean-Romanet transect that include not only elements of thrust tectonics but also previously undocumented examples of strike-slip shear zones and late brittle, semi-brittle and ductile extensional structures which occurred both in the frontal and rear parts of the thrust wedge. The newly described low-angle mineral lineation, axes of cylindrical folds and dextral mylonitic shear zones in the footwall of the Romanet Fault are oriented subparallel to the orogen and reflect the early phase of oblique convergence. Mineral lineations and striations on planes of normal faults in the hanging wall of the Romanet Fault are oriented orthogonal to the orogen and correspond to a later phase of exhumation driven by the combined effects of erosion and underplating. To explain the increase in the degree of exhumation along the orogen in the study area from NW to SE, we propose a model of strain partitioning and differential exhumation that resulted from longitudinal variations of shortening and erosion under an oblique convergence setting.RÉSUMÉLa partie centrale de la ceinture de plissement et de chevauchement de la Fosse du Labrador de vergence vers l’ouest fait partie intégrante de l’Orogène du Nouveau-Québec, et résulte de la collision oblique avec transpression dextre entre le craton Supérieur archéen et le bloc archéen de la Zone noyau pendant l’Orogenèse trans-hudsonienne (1.82−1.77 Ga). Les structures associées à la transpression dextre sont bien établies dans la partie nord de l’orogène mais pas dans la partie centrale. Nous présentons de nouvelles observations structurales de terrain le long de la traverse ouest−est Minowean-Romanet d’environ 70 km de long, qui comprennent non seulement des évidences de tectonique de chevauchement, mais également des exemples encore non documentés de zones de cisaillement ductile et de structures d’extension fragiles, demi-fragiles et ductiles à la fois dans les parties frontales et arrière du prisme d’accrétion tectonique. La linéation minérale à faible plongement récemment décrite, les axes de plis cylindriques et les zones de cisaillement mylonitique dextre dans le compartiment inférieur de la faille de Romanet sont subparallèles à l’orogène et reflètent une phase précoce de la convergence oblique. La linéation et les stries minérales sur les plans des failles normales dans le compartiment supérieur de la faille de Romanet sont orientées orthogonalement à l’orogène et correspondent à la phase ultérieure d’exhumation induite par les effets combinés de l’érosion et de l’accrétion basale. Pour expliquer l’augmentation du degré d’exhumation le long de l’orogène du nord-ouest au sud-est dans la zone d’étude, nous proposons un modèle de partitionnement de la déformation et de l’exhumation différentielle résultant des variations longitudinales du raccourcissement et de l’érosion dans un contexte de convergence oblique.


Solid Earth ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 1357-1388
Author(s):  
Laurent Jolivet ◽  
Laurent Arbaret ◽  
Laetitia Le Pourhiet ◽  
Florent Cheval-Garabédian ◽  
Vincent Roche ◽  
...  

Abstract. Back-arc extension superimposed on mountain belts leads to distributed normal faults and shear zones interacting with magma emplacement within the crust. The composition of granitic magmas emplaced at this stage often involves a large component of crustal melting. The Miocene Aegean granitoids were emplaced in metamorphic core complexes (MCCs) below crustal-scale low-angle normal faults and ductile shear zones. Intrusion processes interact with extension and shear along detachments, from the hot magmatic flow within the pluton root zone to the colder ductile and brittle deformation below and along the detachment. A comparison of the Aegean plutons with the island of Elba MCC in the back-arc region of the Apennine subduction shows that these processes are characteristic of pluton–detachment interactions in general. We discuss a conceptual emplacement model, tested by numerical models. Mafic injections within the partially molten lower crust above the hot asthenosphere trigger the ascent within the core of the MCC of felsic magmas, controlled by the strain localization on persistent crustal-scale shear zones at the top that guide the ascent until the brittle ductile transition. Once the system definitely enters the brittle regime, the detachment and the upper crust are intruded, while new detachments migrate upward and in the direction of shearing.


2021 ◽  
Author(s):  
Laurent Jolivet ◽  
Laurent Arbaret ◽  
Laetitia Le Pourhiet ◽  
Florent Cheval-Garabedian ◽  
Vincent Roche ◽  
...  

Abstract. Back-arc extension superimposed on mountain belts leads to distributed normal faults and shear zones, interacting with magma emplacement in the crust. The composition of granitic magmas emplaced at this stage often involves a component of crustal melting. The Miocene Aegean granitoids were emplaced in metamorphic core complexes (MCC) below crustal-scale low-angle extensional shear zones and normal faults. Intrusion in such contexts interacts with extension and shear along detachments, from the hot magmatic flow within the pluton root zone to the colder ductile and brittle deformation along the detachment. A comparison of the Aegean plutons with the Elba Island MCC in the back-arc region of the Apennines subduction shows that these processes are characteristic of pluton-detachment interactions in general and we discuss a conceptual emplacement scenario, tested by numerical models. Mafic injections within the partially molten lower crust above the hot asthenosphere trigger the ascent within the core of the MCC of felsic magmas, controlled by the strain localization on persistent crustal scale shear zones at the top that guide the ascent until the brittle ductile transition is reached during exhumation. Once the system definitely enters the brittle regime, the detachment and the upper crust are intruded while new detachments migrate upward and in the direction of shearing. Numerical models reproduce the geometry and the kinematic evolution deduced from field observations.


1991 ◽  
Vol 28 (12) ◽  
pp. 2003-2023 ◽  
Author(s):  
Sharon D. Carr

The present crustal architecture of the southern Omineca Belt in the Canadian Cordillera is a product of Eocene extension and crustal thinning superimposed on a crust that was thickened and deformed during Paleozoic and Jurassic to Late Paleocene compression. Amphibolite-facies rocks exposed as gneiss complexes within the Shuswap Metamorphic Complex, in the southern Omineca Belt, were buried during compression and were exhumed in the lower plates of low- to moderate-angle plastic–brittle Eocene extensional faults.In the Thor–Odin – Pinnacles area three crustal zones, which have experienced different deformation and thermal histories, and intervening shear zones can be correlated with Lithoprobe seismic reflection data. The Basement Zone, which comprises crystalline basement and overlying supracrustal gneisses, is bounded above by the Monashee décollement, a deep-seated northeasterly directed Mesozoic–Paleocene thrust fault. In the hanging wall of the décollement, polydeformed gneisses and schists of the Middle Crustal Zone are characterized by Late Cretaceous–early Tertiary ductile strain, plutonism, and thermal quenching. They are bounded at the top by crustal-scale Eocene normal faults that juxtapose Upper Crustal Zone rocks characterized by Jurassic and older structures and a Jura-Cretaceous cooling history.Middle Crustal Zone rocks of the Thor–Odin – Pinnacles area are correlative with part of the Late Proterozoic Horsethief Creek Group and Cambrian to Jurassic strata and host extensive plutons, stocks, and sheets of the syntectonic and posttectonic Late Paleocene – Early Eocene Ladybird granite suite. Field mapping and geochronology indicate that (i) a substantial part of the penetrative compressional polydeformation history and the thermal peak of metamorphism within the Middle Crustal Zone occurred in the Late Cretaceous–Paleocene; (ii) thrusting on the Monashee décollement had ended by 58 Ma; (iii) the onset of extensional deformation either overlapped or closely followed the compressional regime; (iv) Middle Crustal Zone metamorphic and igneous rocks were hot in the Paleocene and cooled rapidly in the early Tertiary because of extensional denudation.


2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


2003 ◽  
Vol 25 (9) ◽  
pp. 1471-1485 ◽  
Author(s):  
Nicolas Bellahsen ◽  
Jean-Marc Daniel ◽  
Laurent Bollinger ◽  
Evgenii Burov

2021 ◽  
Author(s):  
Kyriaki Drymoni ◽  
John Browning ◽  
Agust Gudmundsson

<p>Dykes and inclined sheets are known occasionally to exploit faults as parts of their paths, but the conditions that allow this to happen are still not fully understood. Here we report field observations from a well-exposed dyke swarm of the Santorini volcano, Greece, that show dykes and inclined sheets deflected into faults and the results of analytical and numerical models to explain the conditions for deflection. The deflected dykes and sheets belong to a local swarm of 91 dyke/sheet segments that was emplaced in a highly heterogeneous and anisotropic host rock and partially cut by some regional faults and a series of historic caldera collapses, the caldera walls providing, excellent exposures of the structures. The numerical models focus on a normal-fault dipping 65° with a damage zone composed of parallel layers or zones of progressively more compliant rocks with increasing distance from the fault rupture plane. We model sheet-intrusions dipping from 0˚ to 90˚ and with overpressures of alternatively 1 MPa and 5 MPa, approaching the fault. We further tested the effects of changing (1) the sheet thickness, (2) the fault-zone thickness, (3) the fault-zone dip-dimension (height), and (4) the loading by, alternatively, regional extension and compression. We find that the stiffness of the fault core, where a compliant core characterises recently active fault zones, has pronounced effects on the orientation and magnitudes of the local stresses and, thereby, on the likelihood of dyke/sheet deflection into the fault zone. Similarly, the analytical models, focusing on the fault-zone tensile strength and energy conditions for dyke/sheet deflection, indicate that dykes/sheets are most likely to be deflected into and use steeply dipping recently active (zero tensile-strength) normal faults as parts of their paths.</p>


SEG Discovery ◽  
2000 ◽  
pp. 1-15
Author(s):  
IAN R. GENDALL ◽  
LUIS A. QUEVEDO ◽  
RICHARD H. SILLITOE ◽  
RICHARD M. SPENCER ◽  
CARLOS O. PUENTE ◽  
...  

ABSTRACT Grassroots exploration has led to discovery of 10 porphyry copper prospects in the previously unexplored Jurassic arc of southeastern Ecuador. The prospects are located in steep, wet, jungle-covered terrain in the Pangui area, part of the Cordillera del Cóndor. The exploration program, initially mounted in search of gold in the Oriente foreland basin, employed panned-concentrate drainage sampling. Follow-up of the resulting anomalies utilized soil sampling combined with rock-chip sampling and geologic mapping of the restricted creek outcrops. Scout and infill drilling of two of the prospects, San Carlos and Panantza, has shown hypogene mineralization averaging 0.5 to 0.7 percent Cu overlain by thin (averaging <30 m) zones of chalcocite enrichment or oxidized copper mineralization. The prospects are centered on small, composite granocliorite to monzogranite porphyry stocks that cut the Zamora batholith or, in one case, a satellite pluton. The batholith is emplaced into Jurassic volcanosedimentary formations, which concealed Triassic extensional half-grabens before being incorporated into the Subandean fold-thrust belt along the western margin of the Oriente basin. North- and northwest-striking normal faults in the hanging wall of a major north-striking fault zone controlled the locations of most of the porphyry centers. K silicate and variably overprinted intermediate argillic alteration, containing chalcopyrite as the principal sulfide mineral, characterize the central parts of most of the porphyry prospects and grade outward to pyrite-dominated propylitic halos. Overprinted sericitic alteration is generally less widely developed, although apparently shallower erosion at the Warintza and Wawame prospects resulted in preservation of extensive pyrite-rich sericitic zones. All the prospects contain appreciable (60–250 ppm) molybdenum, but gold tenors are low except at Panantza and Wawame (~0.15 and 0.2 g/t, respectively). Supergene oxidation and chalcocite enrichment zones are immature because of inhibition by the rapid erosion prevalent in the Pangui area. Supergene profiles attain their maximum development on ridge crests but are essentially absent along major creeks. Discovery of the Pangui belt, along with other recently defined porphyry copper systems in northern Perú, Indonesia, and the Philippines, underscores yet again the efficacy of drainage geochemistry as an exploration technique in tropical and subtropical arc terranes as well as the outstanding potential for additional exposed deposits in poorly explored parts of the circum-Pacific region.


Sign in / Sign up

Export Citation Format

Share Document