An assessment of the total wet ammonium deposition in the East Siberia of Russia based on monitoring data

Author(s):  
Sergey A. Gromov ◽  
Dmitry A. Galushin ◽  
Ekaterina A. Zhadanovskaya

<p>Goal of Study: The study focuses on the application of developed spatial interpolation method [1] to assessment of atmospheric pollutant deposition fluxes. This case study was done for estimating the total ammonium wet deposition in the Eastern Siberia region of Russia. <br>Data: Measurement data for 2017 on the ammonium concentration in atmospheric precipitation were obtained from the stations within the Baikal natural preserved territory thanks to the international EANET network [2] and the Russian national network of precipitation chemistry (PCnet) operated by Roshydromet. <br>Method: On the first step of the algorithm, we prepare the point data on the concentration of from the measurements of PCnet stations in the region. On the second step, we interpolate the precipitation chemistry data to the meteorological stations located in the study region followed by calculation of deposition fluxes at all these sites. The values obtained are interpolated for the regular grid of 100-km by 100-km cells within region. Finally, the total pollutant wet deposition for whole region is a sum of deposition fluxes calculated for each cell.<br>Results: We calculated the weighted-average annual concentration (WAC) of ammonium in atmospheric precipitation at 7 stations of EANET and PCnet in the region. We interpolated the WAC data on the grid cells in the Lake Baikal preserved territory (BPT). The variation of ammonium WAC throughout the BPT is 0.9 mg/l (south of the region) to 0.1 mg/l (northwestern part) with average value of 0.34 mg/l for the whole region. <br>Based on the WAC data and the obtained precipitation amounts at 23 meteorological stations within BPT, we calculated the deposition fluxes for network of more spatial density combined of PC and meteorological stations. <br>Using the “point” calculation results, we have constructed a two-dimensional spatial interpolation of wet ammonium fluxes per each cell. According to the study results, the total amount of ammonium felt with precipitation out from the atmosphere in the territory around Lake Baikal is 42 thou. ton per year. The value of average deposition per cell of 100x100 km for BPT region is 666 ton while in the surround of the EANET station Listvyanka (west Baikal shore) is 828 ton. The spatial distribution of wet annual ammonium deposition is presented at the map of the region.</p><p>This study was carried out in the framework of the Research Projects АААА-А20-120013190049-4 «Development of methods and technologies for monitoring of environmental pollution under the influence of transboundary pollutants transport (UNECE: EMEP, ICP IM) and acid deposition in East Asia (EANET)» and АААА-А20-120020490070-3 «Development and improvement of methods and technologies for integrated background monitoring and comprehensive assessment of the environmental state and pollution in the Russian Federation including their dynamics»</p><p>Reference list:<br>1. Gromov S. A., Galushin D. A., Zhadanovskaya E. A. 2020. Estimation of the total wet sulfur and nitrogen deposition as a part of pollution balance in the south of the Russian Far East based on the monitoring data. - Geophysical Research Abstracts, EGU2020-13871, EGU General Assembly.<br>2. The Acid Deposition Monitoring Network in East Asia (EANET)- URL: https://www.eanet.asia/</p>

2020 ◽  
Author(s):  
Sergey A. Gromov ◽  
Dmitry A. Galushin ◽  
Ekaterina A. Zhadanovskaya

<p>One of the main goals in the regional biogeochemical research of East Asia is to evaluate the state of acid deposition and the related pollution within EANET region (EANET, 2019). In the south of the Russian Far East there are two networks developed to monitor the content of acidic substances in atmospheric fall-out. The first one is the Russian national precipitation chemistry stations operated for more than 30 years, and the second is the international atmospheric monitoring sites supervised by EANET and WMO-GAW (Yearbook, 2019). We calculate the total deposition of airborne sulfur and nitrogen in a large region to evaluate their atmospheric balances under the transboundary influence. The present study focuses on the development and application of the spatial interpolation method to estimate wet deposition fluxes based on the monitoring data for 2013-2018. On the first step of the algorithm, we analyze the correlation of pollution monitoring results between network stations and estimate the maximum radius of representativeness for each station. On the second step, we interpolate the precipitation chemistry data for the set of meteorological stations located in the region under the study and calculate the wet deposition fluxes of sulfur and nitrogen for these sites. The flux values obtained are further interpolated for the regular grid of 10-km by 10-km cells within the region under the study. Finally, the total wet sulfur and nitrogen deposition for the region is a sum of deposition fluxes calculated for each cell. Additionally, we compared the data obtained with the correspondent flux calculated on the basis of the national snow cover chemistry network for the same region and period.</p><p><strong>References</strong></p><ol><li>EANET. Fourth Report for Policy Makers (RPM4): Towards Clean Air for Sustainable Future in East Asia through Collaborative Activities. 2019. 50 p.</li> <li>Yearbook. State and pollution of the environment in the Russian Federation: 2018. Moscow: RosHydroMet, 2019. 227 p. [in Russian]</li> </ol>


2009 ◽  
Vol 9 (5) ◽  
pp. 1579-1595 ◽  
Author(s):  
C. Galy-Lacaux ◽  
D. Laouali ◽  
L. Descroix ◽  
N. Gobron ◽  
C. Liousse

Abstract. Long-term precipitation chemistry have been recorded in the rural area of Banizoumbou (Niger), representative of a semi-arid savanna ecosystem. A total of 305 rainfall samples ~90% of the total annual rainfall) were collected from June 1994 to September 2005. From ionic chromatography, pH major inorganic and organic ions were detected. Rainwater chemistry is controlled by soil/dust emissions associated with terrigeneous elements represented by SO42−, Ca2+, Carbonates, K+ and Mg2+. It is found that calcium and carbonates represent ~40% of the total ionic charge. The second highest contribution is nitrogenous, with annual Volume Weighed Mean (VWM) for NO3− and NH4+ concentrations of 11.6 and 18.1 μeq.l−1, respectively. This is the signature of ammonia sources from animals and NOx emissions from savannas soil-particles rain-induced. The mean annual NH3 and NO2 air concentration are of 6 ppbv and 2.6 ppbv, respectively. The annual VWM precipitation concentration of sodium and chloride are both of 8.7 μeq.l−1 which reflects the marine signature of monsoonal and humid air masses. The median pH value is of 6.05. Acidity is neutralized by mineral dust, mainly carbonates, and/or dissolved gases such NH3. High level of organic acidity with 8μeq.l−1 and 5.2 μeq.l−1 of formate and acetate were also found. The analysis of monthly Black Carbon emissions and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) values show that both biogenic emission from vegetation and biomass burning could explain the rainfall organic acidity content. The interannual variability of the VWM concentrations around the mean (1994–2005) is between ±5% and ±30% and mainly due to variations of sources strength and rainfall spatio-temporal distribution. From 1994 to 2005, the total mean wet deposition flux in the Sahelian region is of 60.1 mmol.m−2.yr−1 ±25%. Finally, Banizoumbou measurements are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire) and in the forested zone of Zoétélé (Cameroon). The total chemical loading presents a maximum in the dry savanna and a minimum in the forest (from 143.7, 100.2 to 86.6 μeq.l−1), associated with the gradient of terrigeneous sources. The wet deposition fluxes present an opposite trend, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr−1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by rainfall gradient along the ecosystems transect.


2018 ◽  
Author(s):  
Jiani Tan ◽  
Joshua S. Fu ◽  
Frank Dentener ◽  
Jian Sun ◽  
Louisa Emmons ◽  
...  

Abstract. This study uses multi-model ensemble results of 11 models from the 2nd phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modelled wet deposition is evaluated with observation networks in North America, Europe and Asia. The modelled results agree well with observations, with 76–83 % of stations having predicted within ±50 % of observations. The results underestimate SO42−, NO3− and NH4+ wet depositions in some European and East Asian stations, but overestimate NO3− wet deposition in Eastern United States. Inter-comparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modelled dry deposition is generally higher than the “inferential” data calculated by observed concentration and modelled velocity in North America, but the inferential data has high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % of the deposits on continental regions and 51 % on ocean (19 % on coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. 65 % of N is deposited on the continental regions and 35 % is on ocean (15 % on coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Compared our results to the results in 2001 from HTAP I, we find that the global distributions of S and N depositions have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44% ). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia (5 Tg(N) and 39 %), East Asia (4 Tg(N) and 21 %) and Southeast Asia (2 Tg(N) and 21 %). The NHx deposition is increased with no control policy on NH3 emission in North America. On the other hand, NOy deposition starts to dominate in East Asia (especially China) due to boosted NOx emission in recent years.


2021 ◽  
Vol 14 (11) ◽  
pp. 7021-7046
Author(s):  
Yao Ge ◽  
Mathew R. Heal ◽  
David S. Stevenson ◽  
Peter Wind ◽  
Massimo Vieno

Abstract. Atmospheric pollution has many profound effects on human health, ecosystems, and the climate. Of concern are high concentrations and deposition of reactive nitrogen (Nr) species, especially of reduced N (gaseous NH3, particulate NH4+). Atmospheric chemistry and transport models (ACTMs) are crucial to understanding sources and impacts of Nr chemistry and its potential mitigation. Here we undertake the first evaluation of the global version of the EMEP MSC-W ACTM driven by WRF meteorology (1∘×1∘ resolution), with a focus on surface concentrations and wet deposition of N and S species relevant to investigation of atmospheric Nr and secondary inorganic aerosol (SIA). The model–measurement comparison is conducted both spatially and temporally, covering 10 monitoring networks worldwide. Model simulations for 2010 compared use of both HTAP and ECLIPSEE (ECLIPSE annual total with EDGAR monthly profile) emissions inventories; those for 2015 used ECLIPSEE only. Simulations of primary pollutants are somewhat sensitive to the choice of inventory in places where regional differences in primary emissions between the two inventories are apparent (e.g. China) but are much less sensitive for secondary components. For example, the difference in modelled global annual mean surface NH3 concentration using the two 2010 inventories is 18 % (HTAP: 0.26 µg m−3; ECLIPSEE: 0.31 µg m−3) but is only 3.5 % for NH4+ (HTAP: 0.316 µg m−3; ECLIPSEE: 0.305 µg m−3). Comparisons of 2010 and 2015 surface concentrations between the model and measurements demonstrate that the model captures the overall spatial and seasonal variations well for the major inorganic pollutants NH3, NO2, SO2, HNO3, NH4+, NO3-, and SO42- and their wet deposition in East Asia, Southeast Asia, Europe, and North America. The model shows better correlations with annual average measurements for networks in Southeast Asia (mean R for seven species: R7‾=0.73), Europe (R7‾=0.67), and North America (R7‾=0.63) than in East Asia (R5‾=0.35) (data for 2015), which suggests potential issues with the measurements in the latter network. Temporally, both model and measurements agree on higher NH3 concentrations in spring and summer and lower concentrations in winter. The model slightly underestimates annual total precipitation measurements (by 13 %–45 %) but agrees well with the spatial variations in precipitation in all four world regions (0.65–0.94 R range). High correlations between measured and modelled NH4+ precipitation concentrations are also observed in all regions except East Asia. For annual total wet deposition of reduced N, the greatest consistency is in North America (0.75–0.82 R range), followed by Southeast Asia (R=0.68) and Europe (R=0.61). Model–measurement bias varies between species in different networks; for example, bias for NH4+ and NO3- is largest in Europe and North America and smallest in East Asia and Southeast Asia. The greater uniformity in spatial correlations than in biases suggests that the major driver of model–measurement discrepancies (aside from differing spatial representativeness and uncertainties and biases in measurements) are shortcomings in absolute emissions rather than in modelling the atmospheric processes. The comprehensive evaluations presented in this study support the application of this model framework for global analysis of current and potential future budgets and deposition of Nr and SIA.


2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2001 ◽  
pp. 1487-1492
Author(s):  
Y. Tsujino ◽  
Y. Satoh ◽  
N. Kuramoto ◽  
Y. Maeda
Keyword(s):  

2019 ◽  
Vol 31 (1) ◽  
Author(s):  
Ágnes Keresztesi ◽  
Marius-Victor Birsan ◽  
Ion-Andrei Nita ◽  
Zsolt Bodor ◽  
Róbert Szép

2016 ◽  
Author(s):  
Xuewu Fu ◽  
Yang Xu ◽  
Xiaofang Lang ◽  
Jun Zhu ◽  
Hui Zhang ◽  
...  

Abstract. Mercury (Hg) concentrations and deposition fluxes in precipitation and litterfall were measured at multiple sites (six rural sites and an urban site) across a broad geographic area in China. The annual deposition fluxes of Hg in precipitation at rural sites and an urban site were 2.0 to 7.2 µg m−2 yr−1 and 12.6 ± 6.5 µg m−2 yr−1, respectively. Wet deposition fluxes of Hg at rural sites showed a clear regional difference with elevated deposition fluxes in the subtropical zone, followed by the temporal zone and arid/semi-arid zone. Precipitation depth is the primary influencing factor causing the variation of wet deposition. Hg fluxes through litterfall ranged from 22.8 to 62.8 µg m−2 yr−1, higher than the wet deposition by a factor of 3.9 to 8.7 fluxes and representing approximately 75 % of the total Hg deposition at the forest sites in China. This suggests that uptake of atmospheric Hg by foliage is the dominant pathway to remove atmospheric mercury in forest ecosystems in China. Wet deposition fluxes of Hg at rural sites of China were generally lower compared to those in North America and Europe, possibly due to a combination of lower precipitation depth, lower GOM concentrations in the troposphere and the generally lower cloud base heights at most sites that washout a smaller amount of GOM and PBM during precipitation events.


2019 ◽  
Author(s):  
Syuichi Itahashi ◽  
Baozhu Ge ◽  
Keiichi Sato ◽  
Joshua S. Fu ◽  
Xuemei Wang ◽  
...  

Abstract. The Model Inter-Comparison Study for Asia (MICS-Asia) Phase III was conducted to promote understanding of regional air quality and climate change in Asia, which have received growing attention due to the huge amount of anthropogenic emissions worldwide. This study provides an overview of acid depositions. Specifically, dry and wet depositions of the following species were analyzed: S (sulfate aerosol, sulfur dioxide (SO2), and sulfuric acid (H2SO4)), N (nitrate aerosol, nitrogen monoxide (NO), nitrogen dioxide (NO2), and nitric acid (HNO3)), and A (ammonium aerosol and ammonia (NH3)). The wet deposition simulated by a total of nine models was analyzed and evaluated using ground observation data from the Acid Deposition Monitoring Network in East Asia (EANET). In this Phase III study, the number of observation sites was increased to 54 from 37 in the Phase II study, and Southeast Asian countries were newly added. Additionally, whereas the analysis period was limited to representative months of each season in MICS-Asia Phase II, this Phase III study analyzed the full year of 2010. The scope of this overview mainly focuses on the annual accumulated depositions. In general, models can capture the observed wet depositions over Asia but underestimate the wet deposition of S and A and show large differences in the wet deposition of N. Furthermore, the ratio of wet deposition to the total deposition (the sum of dry and wet deposition) was investigated in order to understand the role of important processes in the total deposition. The general dominance of wet deposition over Asia and attributions from dry deposition over land were consistently found in all models. Then, total deposition maps over 13 countries participating in EANET were produced, and the balance between deposition and anthropogenic emissions was calculated. Excesses of deposition, rather than of anthropogenic emissions, were found over Japan, North Asia, and Southeast Asia, indicating the possibility of long-range transport within and outside Asia, as well as other emission sources. To improve the ability of models to capture the observed wet deposition, two approaches were attempted, namely, ensemble and precipitation adjustment. The ensemble approach was effective at modulating the differences in performance among models, and the precipitation-adjusted approach demonstrated that the model performance for precipitation played a key role in better simulating wet deposition. Finally, the lessons learned from this Phase III study and future perspectives for Phase IV are summarized.


Sign in / Sign up

Export Citation Format

Share Document