Distributed modeling of groundwater recharge in a semi-arid carbonate aquifer using the integrated surface-subsurface flow simulator HydroGeoSphere

Author(s):  
Lysander Bresinsky ◽  
Jannes Kordilla ◽  
Irina Engelhardt ◽  
Martin Sauter

<p><span>Present methods to quantify recharge in karst aquifers in many cases rely on spatially and temporally aggregated precipitation values, neglecting the highly erratic, non-linear nature of infiltration dynamics that give rise to a dual-domain behavior with a slow diffuse and fast focused recharge component. Here, we demonstrate the applicability of integrated surface-subsurface flow models to simulate diffuse and preferential infiltration within the large scale Western-Mountain-Aquifer (WMA) in Israel and the Palestinian territories. A semi-arid climate region with a highly pronounced seasonality of precipitation and intense short-duration rainfalls, such as the Mediterranean region, emphasizes the importance of understanding and accounting for the complex dynamics of dual-domain infiltration and partitioning of the precipitation input signal via spatially discretized overland flow processes.</span></p><p><span>We apply HydroGeoSphere as a dual-continuum flow simulator for transient variably-saturated water flows, discretizing the rock matrix and secondary porosity (i.e., conduits and fractures) as separate overlapping continua. Flow is respectively computed via the Richards' equation with volume-averaged van Genuchten parameters, assuming that the Richards' equation is valid for both domains. The presented model accounts for surface flow via the two-dimensional Saint-Vénant equations under nonexistent inertial forces. We apply precipitation directly to the overland flow continuum and naturally account for the partitioning into Horton overland flow and percolating water. However, modeling of unsaturated flow through the conduit/fracture continuum with the van Genuchten parameterization is often limited, as the Richards' equation describes flow solely in terms of capillary forces, leading to high matric suction in the matrix continuum as a result of the smaller pore spaces (and hence constant exchange from the fracture continuum to the matrix system). In a natural system, non-linear transfer processes govern the transfer between fracture/conduit and matrix flow, such as inertia-driven infiltration (i.e., droplet, rivulet, and film flow) that initially retains itself from equilibration of capillary pressure heads and avoids instant matrix imbibition. This study demonstrates parametrization strategies to allow for infiltration through the fracture/conduit continuum using small-scale process-based simulations. Further, we offer procedures that help to achieve convergence of complex catchment-scale variably-saturated simulations.</span></p>

2012 ◽  
Vol 16 (10) ◽  
pp. 3909-3923 ◽  
Author(s):  
J. Kordilla ◽  
M. Sauter ◽  
T. Reimann ◽  
T. Geyer

Abstract. The objective of this work is the simulation of saturated and unsaturated flow in a karstified aquifer using a double continuum approach. The HydroGeoSphere code (Therrien et al., 2006) is employed to simulate spring discharge with the Richards equations and van Genuchten parameters to represent flow in the (1) fractured matrix and (2) conduit continuum coupled by a linear exchange term. Rapid vertical small-scale flow processes in the unsaturated conduit continuum are accounted for by applying recharge boundary conditions at the bottom of the saturated model domain. An extensive sensitivity analysis is performed on single parameters as well as parameter combinations. The transient hydraulic response of the karst spring is strongly controlled by the matrix porosity as well as the van Genuchten parameters of the unsaturated matrix, which determine the head dependent inter-continuum water transfer when the conduits are draining the matrix. Sensitivities of parameter combinations partially reveal a non-linear dependence over the parameter space. This can be observed for parameters not belonging to the same continuum as well as combinations, which involve the exchange parameter, showing that results of the double continuum model may depict a certain degree of ambiguity. The application of van Genuchten parameters for simulation of unsaturated flow in karst systems is critically discussed.


2012 ◽  
Vol 9 (2) ◽  
pp. 1515-1546
Author(s):  
J. Kordilla ◽  
M. Sauter ◽  
T. Reimann ◽  
T. Geyer

Abstract. The objective of this work is the simulation of saturated and unsaturated flow in a karstified aquifer using a double continuum approach. The HydroGeoSphere code (Therrien et al., 2006) is employed to simulate spring discharge with the Richards equations and van Genuchten parameters to represent flow in the (1) fractured matrix and (2) conduit continuum coupled by a linear exchange term. Rapid vertical small-scale flow processes in the unsaturated conduit continuum are accounted for by applying recharge boundary conditions at the bottom of the saturated model domain. An extensive sensitivity analysis is performed on single parameters as well as parameter combinations. The transient hydraulic response of the karst spring is strongly controlled by the matrix porosity as well as the van Genuchten parameters of the unsaturated matrix, which determine the head dependent inter-continuum water transfer when the conduits are draining the matrix. Sensitivities of parameter combinations partially reveal a non-linear dependence over the parameter space. This can be observed for parameters not belonging to the same continuum as well as combinations, which involve the exchange parameter, showing that results of the double continuum model may depict a certain degree of ambiguity.


2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2008 ◽  
Vol 10 (3) ◽  
pp. 227-244 ◽  
Author(s):  
Olaf Kolditz ◽  
Jens-Olaf Delfs ◽  
Claudius Bürger ◽  
Martin Beinhorn ◽  
Chan-Hee Park

In this paper we present an object-oriented concept for numerical simulation of multi-field problems for coupled hydrosystem analysis. Individual (flow) processes modelled by a particular partial differential equation, i.e. overland flow by the shallow water equation, variably saturated flow by the Richards equation and saturated flow by the groundwater flow equation, are identified with their corresponding hydrologic compartments such as land surface, vadose zone and aquifers, respectively. The object-oriented framework of the compartment approach allows an uncomplicated coupling of these existing flow models. After a brief outline of the underlying mathematical models we focus on the numerical modelling and coupling of overland flow, variably saturated and groundwater flows via exchange flux terms. As each process object is associated with its own spatial discretisation mesh, temporal time-stepping scheme and appropriate numerical solution procedure. Flow processes in hydrosystems are coupled via their compartment (or process domain) boundaries without giving up the computational necessities and optimisations for the numerical solution of each individual process. However, the coupling requires a bridging of different temporal and spatial scales, which is solved here by the integration of fluxes (spatially and temporally). In closing we present three application examples: a benchmark test for overland flow on an infiltrating surface and two case studies – at the Borden site in Canada and the Beerze–Reusel drainage basin in the Netherlands.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1174 ◽  
Author(s):  
Honglin Zhu ◽  
Tingxi Liu ◽  
Baolin Xue ◽  
Yinglan A. ◽  
Guoqiang Wang

Soil moisture distribution plays a significant role in soil erosion, evapotranspiration, and overland flow. Infiltration is a main component of the hydrological cycle, and simulations of soil moisture can improve infiltration process modeling. Different environmental factors affect soil moisture distribution in different soil layers. Soil moisture distribution is influenced mainly by soil properties (e.g., porosity) in the upper layer (10 cm), but by gravity-related factors (e.g., slope) in the deeper layer (50 cm). Richards’ equation is a widely used infiltration equation in hydrological models, but its homogeneous assumptions simplify the pattern of soil moisture distribution, leading to overestimates. Here, we present a modified Richards’ equation to predict soil moisture distribution in different layers along vertical infiltration. Two formulae considering different controlling factors were used to estimate soil moisture distribution at a given time and depth. Data for factors including slope, soil depth, porosity, and hydraulic conductivity were obtained from the literature and in situ measurements and used as prior information. Simulations were compared between the modified and the original Richards’ equations and with measurements taken at different times and depths. Comparisons with soil moisture data measured in situ indicated that the modified Richards’ equation still had limitations in terms of reproducing soil moisture in different slope positions and rainfall periods. However, compared with the original Richards’ equation, the modified equation estimated soil moisture with spatial diversity in the infiltration process more accurately. The equation may benefit from further solutions that consider various controlling factors in layers. Our results show that the proposed modified Richards’ equation provides a more effective approach to predict soil moisture in the vertical infiltration process.


2019 ◽  
Vol 18 (1) ◽  
pp. 163-173
Author(s):  
A. Yu. Botashev ◽  
R. A. Bayramukov

In many industries, the share of small-scale production plants is significant. In these conditions, compared with traditional methods of pressure treatment, pulse pressure treatment methods, one of the varieties of which is gas stamping, are more efficient. However, the known devices of gas stamping provide mainly stamping of thin-walled parts. To expand the technological capabilities of gas stamping, the authors developed a gas stamping device with a piston pressure multiplier, in which heating and deformation of the stamping workpiece is carried out using the energy of combustion of fuel mixtures in the combustion chamber, in the working cylinder and in the cavity of the matrix. This article is devoted to the study of the workflow of this device. Theoretical analysis of the workflow was carried out, and, as a result, a pattern was determined for the variation of the pressure that performs the stamping process in the working cylinder. In particular, it was found that at the final stage of the stamping process, due to the energy of combustion of the fuel mixture, the pressure in the working cylinder increases 1.5...2 times, which allows a significant increase in the thickness of the parts to be stamped. An experimental gas stamping device with a piston pressure multiplier was developed, and experimental studies were carried out. The studies confirmed the main results of the theoretical analysis: the discrepancy between the theoretical and experimental values of the degree of pressure multiplication in the working cylinder does not exceed 11%.


2017 ◽  
Vol 43 (4) ◽  
pp. 1831
Author(s):  
A. Papafotiou ◽  
C. Schütz ◽  
P. Lehmann ◽  
P. Vontobel ◽  
D. Or ◽  
...  

Infiltration and evaporation are governing processes for water exchange between soil and atmosphere. In addition to atmospheric supply or demand, infiltration and evaporation rates are controlled by the material properties of the subsurface and the interplay between capillary, viscous and gravitational forces. This is commonly modeled with semi-empirical approaches using continuum models, such as the Richards equation for unsaturated flow. However, preferential flow phenomena often occur, limiting or even entirely suspending the applicability of continuum-based models. During infiltration, unstable fingers may form in homogeneous or heterogeneous porous media. On the other hand, the evaporation process may be driven by the hydraulic coupling of materials with different hydraulic functions found in heterogeneous systems. To analyze such preferential flow processes, water distribution was monitored in infiltration and evaporation lab experiments using neutron transmission techniques. Measurements were performed in 2D and 3D, using homogeneous and heterogeneous setups. The experimental findings demonstrate the fingering effect in infiltration and how it is influenced by the presence of fine inclusions in coarse background material. During evaporation processes, the hydraulic coupling effect is found to control the evaporation rate, limiting the modeling of water balances between soil and surface based on surface information alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhen Zhong ◽  
Huicai Gao ◽  
Yunjin Hu

In this study, an experimental apparatus was developed to investigate unsaturated infiltration in an analog fracture-matrix system. Fracture and adjacent matrix is simulated by sands with various particle sizes. Four rainfall infiltration experiments were performed on the analog fracture-matrix system at a constant rainfall rate of 100 mm/h. The process of rainfall infiltration is measured by a combination method of tensiometers and quick moisture apparatus. The measured results reveal that fracture-matrix interactions certainly exert influences on the hydraulic behaviour of unsaturated fractured matrix, and the fluid flow mainly infiltrates along the nonuniform paths within the matrix. Moreover, it is observed that the influences are greater when using a coarser sand to mimic the fracture. Specifically, the wetting phase in the matrix moves faster than that in the fracture; the fracture, therefore, acts as a vertical capillary barrier, but there exists lateral water exchange from the matrix to the fracture. Overall, this study has demonstrated the importance of fracture/matrix interactions, which should be considered when dealing with unsaturated flow through permeable matrices.


2021 ◽  
Author(s):  
S.R. Zhu ◽  
L.Z. Wu ◽  
T. Ma ◽  
S.H. Li

Abstract The numerical solution of various systems of linear equations describing fluid infiltration uses the Picard iteration (PI). However, because many such systems are ill-conditioned, the solution process often has a poor convergence rate, making it very time-consuming. In this study, a control volume method based on non-uniform nodes is used to discretize the Richards equation, and adaptive relaxation is combined with a multistep preconditioner to improve the convergence rate of PI. The resulting adaptive relaxed PI with multistep preconditioner (MP(m)-ARPI) is used to simulate unsaturated flow in porous media. Three examples are used to verify the proposed schemes. The results show that MP(m)-ARPI can effectively reduce the condition number of the coefficient matrix for the system of linear equations. Compared with conventional PI, MP(m)-ARPI achieves faster convergence, higher computational efficiency, and enhanced robustness. These results demonstrate that improved scheme is an excellent prospect for simulating unsaturated flow in porous media.


10.14311/1829 ◽  
2013 ◽  
Vol 53 (4) ◽  
Author(s):  
Michal Kuráž ◽  
Petr Mayer

This paper presents several algorithms that were implemented in DRUtES [1], a new open source project. DRUtES is a finite element solver for coupled nonlinear parabolic problems, namely the Richards equation with the dual porosity approach (modeling the flow of liquids in a porous medium). Mass balance consistency is crucial in any hydrological balance and contaminant transportation evaluations. An incorrect approximation of the mass term greatly depreciates the results that are obtained. An algorithm for automatic time step selection is presented, as the proper time step length is crucial for achieving accuracy of the Euler time integration method. Various problems arise with poor conditioning of the Richards equation: the computational domain is clustered into subregions separated by a wetting front, and the nonlinear constitutive functions cover a high range of values, while a very simple diagonal preconditioning method greatly improves the matrix properties. The results are presented here, together with an analysis.


Sign in / Sign up

Export Citation Format

Share Document