Petrology, phase equilibria and In-situ U-Th-Pbtotal monazite geochronology of metasedimentary rocks from Pranhita-Godavari Basin and its implication in Mesoproterozoic-Neoproterozoic Supercontinent Assembly

Author(s):  
Ab Majeed Ganaie ◽  
Hifzurrahman ◽  
Pritam Nasipuri ◽  
Kausik Satpathi

<p>The Pakhal basin occurs as two parallel NW-SE trending sub-basins (Western and Eastern) located at the East-Dharwar Craton (EDC) and the Bastar Craton junction. The metasedimentary rocks exposed at the western side of the basin are known as the Pakhal belt, whereas those exposed on the eastern sides are known as the Albaka belt. The aggregate thickness of the sediments is nearly 6000 meters. Researchers have studied the geochemical affinities of Pakhal and Albaka rock, which proved to be crucial to understand the basin-architecture, source of sediments, and basin evolution in the context of rifting of the Dharwar and the Bastar craton However, the timing of inversion of tectonics and subsequent basin convergence is not studied.</p><p>Xenoliths of metasedimentary rocks are exposed within the EDC granites near the Pakhal basin. Aggregates of biotite, muscovite, plagioclase, and quartz constitute these metasedimentary rocks. Monazite, zircon, and iron-oxide are present as accessory minerals. The X<sub>Mg</sub> Biotite (22 Opfu) varies from 0.86-0.10 and Ti content of biotite varies between 0.26-0.34 apfu. The mica is mostly muscovite with mean Si (22 Opfu.) content of 6.28 apfu. The X<sub>Ab</sub> of plagioclase is constrained to be 0.97 apfu. The P-T conditions of metasedimentary xenoliths are constrained by using conventional geothermobarometers and P-T pseudosection analysis. The Ti content in biotite yield peak temperature 650<sup>0</sup>C for the stabilization of biotite. The P-T pseudosection analysis and subsequent modeling of compositional parameters imply a temperature window of 600-700 <sup>0</sup>C and pressure 0.6-1.0 GPa for the stability of biotite-muscovite-plagioclase-quartz assemblages. ~ 50 μm monazites grains are dispersed throughout the studied sample. The ThO<sub>2</sub> content in the monazite grains varies between 1.7-5.8 wt%. Compositionally, the monazite grains are mostly La-Ce-Nd monazite in a tripartite classification. In a histogram distribution, the U-Th-Pb total spot ages exhibit two prominent peaks, at ~ 1295 Ma and ~ 1111 Ma. When combined with the P-T pseudosection analysis, the monazite ages imply rifting and opening the basin at ~ 1295 Ma. The ~ 1111 Ma monazite growth is correlated with granite emplacement and amalgamation of the Dharwar and the Bastar craton during Neoproterozoic Rodinia assembly.</p>

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


1996 ◽  
Vol 451 ◽  
Author(s):  
C. Henry de Villeneuve ◽  
J. Pinson ◽  
F. Ozanam ◽  
J. N. Chazalviel ◽  
P. Allongue

ABSTRACTThis works addresses the question of the direct attachment of organic molecules on Si(111) by an electrochemical method. Anodic grafting of -OR group is demonstrated by in-situ STM and the LDOS characterized. The grafting of aryl groups, by reduction of aryl diazonium salts in aqueous solution, is also described. This approach leads to well ordered and close-packed thin molecular films with various functionality. Different chemical and structural characterizations conclude to a Si-C binding, between the Si surface and aryl groups. The stability of films is also investigated.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2017 ◽  
Vol 86 (11) ◽  
pp. 999-1023 ◽  
Author(s):  
O N Martyanov ◽  
Yu V Larichev ◽  
E V Morozov ◽  
S N Trukhan ◽  
S G Kazarian
Keyword(s):  

2016 ◽  
Vol 73 (6) ◽  
pp. 572-576 ◽  
Author(s):  
Milorad Milivojevic ◽  
Vladimir Petrovic ◽  
Miroslav Vukosavljevic ◽  
Ivan Marjanovic ◽  
Mirko Resan

Background/Aim. Enlargement of optical zone (OZ) diameter during laser in situ keratomileusis (LASIK) correction of myopia postoperatively improves the optical outcome, however, it also leads to the increased stroma tissue consumption - progressive corneal thinning. The aim of this investigation was to present the possibility of safe OZ enlargement without impairing the structural stability of the cornea, while obtaining an improved optical outcome with LASIK treatment of shortsightedness. Methods. Preoperative assessment of the cornea structure and prediction of the ablated stroma tissue consumption was conducted in 37 patients (74 eyes) treated for shortsightedness by means of the LASIK method. With the eyes that, according to their cornea structure, had the capacity for OZ diameter enlargement of 0.5 mm, LASIK treatment was performed within the wider OZ diameter of 7.0 mm compared to the standard 6.5 mm. The following two groups were formed, depending on the diameter of the utilized OZ: the group I (the eyes treated with the OZ 6.5 mm, n = 37) and the group II (the eyes treated with the OZ 7.0 mm, n = 37). Results. No significant difference in the observed structural parameters of the cornea was detected between the groups of patients treated with different OZ diameters. The values of all the parameters were significantly bellow the threshold values for the development of postoperative ectasia. Conclusion. Diameter enlargement of the treated OZ, if there is a preoperative cornea capacity for such enlargement, will not impair the postoperative stability of the cornea structure, and will significantly improve the optical outcome.


Sign in / Sign up

Export Citation Format

Share Document