Melting and forefield reconnaissance technologies within TRIPLE -  accessing subglacial water reservoirs for future missions to Ocean Worlds

Author(s):  
Michael Stelzig ◽  
Jan Audehm ◽  
Ben Burgman ◽  
Fabian Becker ◽  
Lutz Deriks ◽  
...  

<p>Recent measurements suggest the Jovian satellite Europa as one of the most promising places to host extraterrestrial life in the Solar System. In a global ocean, well hidden by  a thick layer of ice, this moon supposedly contains more than twice as much liquid water than Earth. Many currently discussed space missions therefore aim to explore Europa’s chemical composition or investigate its habitability and even search for biosignatures.<br>The TRIPLE Project, initiated by the DLR Space Administration, comprises the development of Technologies for Rapid Ice Penetration and subglacial Lake Exploration and consists of three distinct components: (i) a melting probe, that travels through the ice and carries (ii) an autonomous nano-scale underwater vehicle (nanoAUV) that explores the ocean and takes samples to be delivered to (iii) an astrobiological laboratory. The full system should be tested in a terrestrial analog scenario in Antarctica in approximately five years as a demonstration for a future space mission. For a successful test we need a retrievable melting probe capable of penetrating several kilometres of ice while avoiding obstacles and navigating around them. It has to be able to stop and dwell at the ice-water boundary, before returning back to the surface.</p><p>This contribution focuses on TRIPLE-IceCraft and TRIPLE-FRS in which key technologies of such a melting probe are developed. </p><p>The TRIPLE-IceCraft melting probe is designed as a modular transfer system to transport standardised payloads through ice sheets of several hundred meters of thickness and penetrate into a subglacial water reservoir. Possible payloads are e.g. the nanoAUV or in-situ analysis devices for water samples such as a fluorescence spectrometer. The melting probe will be demonstrated at the Ekström shelf ice in Antarctica at the end of the project. </p><p> </p><p>The forefield reconnaissance system developed in TRIPLE-FRS combines radar and sonar techniques to benefit from both sensor principles inside ice. The radar antennas together with a specialized pulse amplifier as well as a piezoelectric acoustic transducer will directly be integrated into the melting head. To account for the respective propagation speed of electromagnetic waves, which is dependent on the surrounding ice structure, an in-situ permittivity sensor will additionally be developed. With this system, obstacles as well as the ice-water interface at the bottom of the icy layer could be detected. In order to prove the functionality and the performance of the system, several field tests on alpine glaciers will be performed during the project.</p><p>The successful demonstration of the described subsystems and key technologies represents a first milestone in the TRIPLE project line which will serve as a baseline design for the future development of space missions to Ocean Worlds as e.g. Europa.</p>

2021 ◽  
Vol 13 (7) ◽  
pp. 1335
Author(s):  
Ronald Souza ◽  
Luciano Pezzi ◽  
Sebastiaan Swart ◽  
Fabrício Oliveira ◽  
Marcelo Santini

The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA) data. Time series of satellite-derived surface wind data, as well as these and other meteorological variables, retrieved from ERA5 reanalysis at the eddies’ successive positions in time, allowed us to investigate the temporal modulation of the lower atmosphere by the eddies’ presence along their translation and lifespan. The reanalysis data indicate a mean increase of 78% in sensible and 55% in latent heat fluxes along the warm eddy trajectory in comparison to the surrounding ocean of the study region. Over the cold core eddy, on the other hand, we noticed a mean reduction of 49% and 25% in sensible and latent heat fluxes, respectively, compared to the adjacent ocean. Additionally, a field campaign observed both eddies and the lower atmosphere from ship-borne observations before, during and after crossing both eddies in the study region during October 2013. The presence of the eddies was imprinted on several surface meteorological variables depending on the sea surface temperature (SST) in the eddy cores. In situ oceanographic and meteorological data, together with high frequency micrometeorological data, were also used here to demonstrate that the local, rather than the large scale forcing of the eddies on the atmosphere above, is, as expected, the principal driver of air-sea interaction when transient atmospheric systems are stable (not actively varying) in the study region. We also make use of the in situ data to show the differences (biases) between bulk heat flux estimates (used on atmospheric reanalysis products) and eddy covariance measurements (taken as “sea truth”) of both sensible and latent heat fluxes. The findings demonstrate the importance of short-term changes (minutes to hours) in both the atmosphere and the ocean in contributing to these biases. We conclude by emphasizing the importance of the mesoscale oceanographic structures in the BMC on impacting local air-sea heat fluxes and the marine atmospheric boundary layer stability, especially under large scale, high-pressure atmospheric conditions.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4863
Author(s):  
Victor Dyomin ◽  
Alexandra Davydova ◽  
Igor Polovtsev ◽  
Alexey Olshukov ◽  
Nikolay Kirillov ◽  
...  

The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.


2017 ◽  
Vol 58 ◽  
pp. 6.1-6.36 ◽  
Author(s):  
I. Gultepe ◽  
A. J. Heymsfield ◽  
P. R. Field ◽  
D. Axisa

AbstractIce-phase precipitation occurs at Earth’s surface and may include various types of pristine crystals, rimed crystals, freezing droplets, secondary crystals, aggregates, graupel, hail, or combinations of any of these. Formation of ice-phase precipitation is directly related to environmental and cloud meteorological parameters that include available moisture, temperature, and three-dimensional wind speed and turbulence, as well as processes related to nucleation, cooling rate, and microphysics. Cloud microphysical parameters in the numerical models are resolved based on various processes such as nucleation, mixing, collision and coalescence, accretion, riming, secondary ice particle generation, turbulence, and cooling processes. These processes are usually parameterized based on assumed particle size distributions and ice crystal microphysical parameters such as mass, size, and number and mass density. Microphysical algorithms in the numerical models are developed based on their need for applications. Observations of ice-phase precipitation are performed using in situ and remote sensing platforms, including radars and satellite-based systems. Because of the low density of snow particles with small ice water content, their measurements and predictions at the surface can include large uncertainties. Wind and turbulence affecting collection efficiency of the sensors, calibration issues, and sensitivity of ground-based in situ observations of snow are important challenges to assessing the snow precipitation. This chapter’s goals are to provide an overview for accurately measuring and predicting ice-phase precipitation. The processes within and below cloud that affect falling snow, as well as the known sources of error that affect understanding and prediction of these processes, are discussed.


2014 ◽  
Vol 27 (5) ◽  
pp. 1945-1957 ◽  
Author(s):  
John M. Lyman ◽  
Gregory C. Johnson

Abstract Ocean heat content anomalies are analyzed from 1950 to 2011 in five distinct depth layers (0–100, 100–300, 300–700, 700–900, and 900–1800 m). These layers correspond to historic increases in common maximum sampling depths of ocean temperature measurements with time, as different instruments—mechanical bathythermograph (MBT), shallow expendable bathythermograph (XBT), deep XBT, early sometimes shallower Argo profiling floats, and recent Argo floats capable of worldwide sampling to 2000 m—have come into widespread use. This vertical separation of maps allows computation of annual ocean heat content anomalies and their sampling uncertainties back to 1950 while taking account of in situ sampling advances and changing sampling patterns. The 0–100-m layer is measured over 50% of the globe annually starting in 1956, the 100–300-m layer starting in 1967, the 300–700-m layer starting in 1983, and the deepest two layers considered here starting in 2003 and 2004, during the implementation of Argo. Furthermore, global ocean heat uptake estimates since 1950 depend strongly on assumptions made concerning changes in undersampled or unsampled ocean regions. If unsampled areas are assumed to have zero anomalies and are included in the global integrals, the choice of climatological reference from which anomalies are estimated can strongly influence the global integral values and their trend: the sparser the sampling and the bigger the mean difference between climatological and actual values, the larger the influence.


2017 ◽  
Vol 10 (6) ◽  
pp. 2077-2091 ◽  
Author(s):  
Sabina Assan ◽  
Alexia Baudic ◽  
Ali Guemri ◽  
Philippe Ciais ◽  
Valerie Gros ◽  
...  

Abstract. Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 ∕ ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per  % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4406 ◽  
Author(s):  
Rafael Sola-Guirado ◽  
Sergio Bayano-Tejero ◽  
Antonio Rodríguez-Lizana ◽  
Jesús Gil-Ribes ◽  
Antonio Miranda-Fuentes

Canopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density.


2014 ◽  
Vol 809-810 ◽  
pp. 43-52
Author(s):  
Hua Hua Wang ◽  
Nan Li ◽  
Kai Li ◽  
Yuan Bu ◽  
Wen Le Dai ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) as an excellent supporter covered with a thick layer of cobalt phthalocyanine (CoPc) were prepared by in-situ synthesis. Platinum particles were adopted to enhance the conductivity of CoPc-MWCNTs. The final nanocomposite Pt-CoPc-MWCNTs was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Strong aromatic π-π stacking between MWCNTs and CoPc made CoPc in-situ forming on MWCNTs. With homogeneous thickness of CoPc covered on the MWCNTs and Pt particles equally distributed, the nanocomposite was used as electrocatalyst. The electrochemical properties of the composite got researched by casting the dispersion of Pt-CoPc-MWCNTs on the glassy carbon electrode. Compared with other modified electrodes, Pt-CoPc-MWCNTs/GC electrode exhibited excellent electrochemical activity towards dopamine (DA) and uric acid (UA). Linear responses for DA and UA were obtained in the ranges of 5 to 170 μM and 5 to 100 μM, and limits of detection were 2.6 and 1.4 μM (S/N= 3), respectively. Simultaneous detection of DA and UA in the presence of ascorbic acid (AA) also displayed selective property, with no interference to each other.


Sign in / Sign up

Export Citation Format

Share Document