Tectonic activity of the northern and southern plate boundaries of the Niuafo’ou microplate, Lau Basin, southwest Pacific Ocean

Author(s):  
Anouk Beniest ◽  
Michael Schnabel ◽  
Anke Dannowski ◽  
Florian Schmid ◽  
Anna Jegen ◽  
...  

<p>The northern Lau Basin in the southwest Pacific Ocean is one of the fastest opening back-arc basins on Earth, resulting in a mosaic of microplates, including the Niuafo’ou and Tongan microplates. The Fonualei Rift and Spreading Center (FRSC) is the eastern plate boundary that separates the Niuafo’ou from the Tongan microplate. The northern part of the FRSC is actively spreading, whereas the southern part is rifting. What is unclear, however, is how extension of the Lau Basin is accommodated north and south of the FRSC.</p><p>We present the results of six Multi-Channel Seismic profiles acquired during the ARCHIMEDES-I expedition and show an analogue lithosphere-scale model example of our proposed tectonic evolution. Profiles P1 (oriented NW-SE) and P2 (oriented W-E) cover the Mangatolu Triple Junction (MTJ) and the northern part of the FRSC. P3 and P4 (both oriented W-E) cover the southern Niuafo’ou microplate. P5 and P6 (both oriented W-E) cover the area south of the FRSC.</p><p>The northern profiles (P1 and P2) reveal a thick package of sediment towards the east, covering a heavily faulted basement over a wide area. Some indication for intrusive material is observed closer to the volcanic arc, but also further towards the western end of P2. Faults cross-cutting the basement but that do not reach the surface are considered inactive today. Faults reach the surface close to the MTJ and the northern tip of the FRSC and are considered active today. This leads to the interpretation that an earlier rift phase accommodated extension in a wide rift tectonic setting, whereas today, the extension is accommodated in a narrow rift or spreading tectonic setting. We will show an analogue model example that demonstrates this wide-to-narrow extensional tectonic evolution.</p><p>The profiles that cover the southern extent of the FRSC (P3, P4, P5 and P6), show that active faulting occurs towards the west, close to the Central Lau Spreading Center. Hidden faults that have deformed the basement, but do not affect the surface today anymore are observed in the abyssal parts of P3, P4, P5 and P6. Active faults that reach the surface are also observed towards the east. Recent volcanism is observed, both in the form of intrusive bodies, i.e. sills, as well as volcanoes that pierce through the stratigraphy. The observations lead to the conclusion that south of the FRSC an earlier (wide) rift system affected a larger area in the current abyssal parts of the profiles, whereas extension is currently accommodated through spreading in the CLSC, west of the southern tip of the FRSC.</p>

2021 ◽  
Vol 18 (19) ◽  
pp. 5397-5422
Author(s):  
Natalie R. Cohen ◽  
Abigail E. Noble ◽  
Dawn M. Moran ◽  
Matthew R. McIlvin ◽  
Tyler J. Goepfert ◽  
...  

Abstract. Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the northeastern (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1500–2000 m depth (Lupton et al., 2004). Studies investigating the long-range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolo Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal-plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation, and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep-sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.


2021 ◽  
Author(s):  
Natalie R. Cohen ◽  
Abigail E. Noble ◽  
Dawn M. Moran ◽  
Matthew R. McIlvin ◽  
Tyler J. Goepfert ◽  
...  

Abstract. Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the Northeast (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1,500–2,000 m depth (Lupton et al. 2004). Studies investigating the long range of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin, and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolu Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation and chemoautotrophy were comparatively abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean, and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.


2020 ◽  
Author(s):  
Eline Le Breton

<p>The Western Mediterranean-Alpine belt is remarkable for its tectonic complexity, i.e. strong arcuation of plate boundaries, fast trench retreat, upper-plate extension and switch of subduction/collision polarity around the Adriatic plate (Adria). The kinematic evolution of the Western Mediterranean area is enigmatic due to the intermittently motion of small continental plates (Adria, Iberia and Sardinia-Corsica) that are caught between two major plates (Africa and Europe), converging since Cretaceous time. Reconstructing the past motion of these micro-plates is challenging due to the strong deformation of their boundaries but is key to understand the geodynamic evolution of the whole area.</p><p>The Neogene tectonic evolution is well constrained using magnetic anomalies and transform zones in the Atlantic Ocean for the motion of Europe, Iberia and Africa, and by reconstructing the amount of convergence along fold-and-thrust belts (Apennines, Alps, Dinarides, Provence) and coeval divergence along extensional basins (Liguro-Provencal and Tyrrhenian basins, Sicily Channel Rift Zone) for the motion of Adria and Sardinia-Corsica. Those reconstructions show that Adria had a slight independent motion from Africa and rotated counter-clockwise of about 5º relative to Europe since 20 Ma. However, uncertainties increase and debates arise as one goes back in time. The main debates concern the past motion of Iberia and where its motion relative to Europe is being accommodated in Mesozoic time. Different kinematic scenarios have been proposed depending on the interpretation of paleomagnetic dataset of Iberia, magnetic anomalies in the North Atlantic, and geological-geophysical record of deformation in the Pyrenees and between Iberia and Sardinia-Corsica. Those scenarios have different implications for the tectonic evolution of the Apennines, especially for the Permian-Triassic paleo-tectonic setting of Sardinia, Calabria and Adria, and for the extent and timing of closure of the Liguro-Piemont Ocean. It is important to discuss those implications to better understand subduction processes in the Apennines and their driving forces.</p>


2020 ◽  
Author(s):  
Florian Schmid ◽  
Heidrun Kopp ◽  
Michael Schnabel ◽  
Anke Dannowski ◽  
Ingo Heyde ◽  
...  

<p>The northeastern Lau Basin is one of the fastest opening and magmatically most active back-arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is fairly well understood, the structure and evolution of the back-arc crust are not. We present refraction seismic, multichannel seismic and gravity data from a 300 km long east-west oriented transect crossing the Niuafo’ou Microplate (back-arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P wave tomography model shows strong lateral variations in the thickness and velocity-depth distribution of the crust. The thinnest crust is present in the Fonualei Rift and Spreading Center, suggesting active seafloor spreading there. In the much thicker crust of the volcanic arc we identify a region of anomalously low velocities, indicative of partial melts. Surprisingly, the melt reservoir is located at ~17 km distance to the volcanic front, supporting the hypothesis that melts are deviated from the volcanic arc towards the FRSC in sub-crustal domains. We identify two distinct regions in the back-arc crust, representing different opening phases of the northeastern Lau Basin. During initial extension, likely dominated by rifting, crust of generally lower upper-crustal velocities formed. During an advanced opening phase, likely dominated by seafloor spreading, crust of higher upper-crustal velocities formed and is now up to 11 km thick. This thickening is the result of magmatic underplating, which is supported by elevated upper mantle temperatures in this region.</p>


2021 ◽  
Vol 230 ◽  
pp. 103929
Author(s):  
Durbar Ray ◽  
Bulusu Sreenivas ◽  
L. Surya Prakash ◽  
Aninda Mazumdar ◽  
Aditya Peketi ◽  
...  

2010 ◽  
Vol 30 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Quanshu YAN ◽  
Xuefa SHI ◽  
Naisheng LI

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


Sign in / Sign up

Export Citation Format

Share Document