Sahel droughts induced by large volcanic eruptions over the last millennium in IPSL-CM6A-LR model

Author(s):  
Julián Villamayor ◽  
Myriam Khodri

<p><span>The Sahel region is extremely sensible to alterations in its characteristic precipitation regime, associated with the West African Monsoon (WAM). In fact, the WAM presents strong variability at several timescales which has focused the attention of many works that mainly attribute such changes to variations in the sea surface temperature, the emerging increase of greenhouse gases concentration and to alterations in land use. However, the impact of large volcanic eruptions has been just tentatively addressed. This work aims at shedding more light on the influence of large volcanic eruptions on Sahel rainfall relying on past1000 simulations, covering the last millennium, of the IPSL-CM6A-LR model. The results show the mechanisms involved and the differences between tropical and high-latitude eruptions.</span></p>

Tellus B ◽  
2010 ◽  
Vol 62 (5) ◽  
Author(s):  
Victor Brovkin ◽  
Stephan J. Lorenz ◽  
Johann Jungclaus ◽  
Thomas Raddatz ◽  
Claudia Timmreck ◽  
...  

2019 ◽  
Vol 92 (2) ◽  
pp. 273-287 ◽  
Author(s):  
Natalia Williams ◽  
Diego Añón Suárez ◽  
Maria Rieradevall ◽  
Andrea Rizzo ◽  
Romina Daga ◽  
...  

AbstractThrough the last millennium, Patagonia has been affected by changing climate conditions and successive volcanic eruptions. Lake Tonček is a high-altitude lake in the Southern Volcanic Zone in the northern Patagonian Andes. We documented the responses of the subfossil chironomid community to the effects of successive volcanic and different conditions in a sedimentary sequence from this lake comprising the last 900 years. The community composition and structure (abundance, diversity, and richness) and the development of morphological anomalies in the chironomid mouthparts were evaluated throughout the core. Both climatic conditions and volcanism affected the chironomid community differentially. The chironomid community changed following short-term climate change patterns, being affecting not only by temperature changes but also by variations in the regional precipitation regime. Decreases in abundance and diversity were only observed in coarse volcanic layers. In these samples, we recorded a high percentage of damaged chironomid mouthparts caused by mechanical wear, breakage or abrasion, possibly due to the increase of mineral particles. Our results represent important baseline data about the responses of chironomid communities to environmental disturbances in high-altitude lakes over long time frames.


2008 ◽  
Vol 21 (24) ◽  
pp. 6636-6648 ◽  
Author(s):  
Christopher M. Taylor

Abstract Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been hindered by the lack of observations at an appropriate scale. In this study, passive microwave data at 10.65 GHz from the Tropical Rainfall Measuring Mission satellite are used to identify soil moisture variability during the West African monsoon. A simple model of surface sensible heat flux is developed from these data and is used, alongside atmospheric analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF), to provide a new interpretation of monsoon variability on time scales of the order of 15 days. During active monsoon periods, the data indicate extensive areas of wet soil in the Sahel. The impact of the resulting weak surface heat fluxes is consistent in space and time with low-level variations in atmospheric heating and vorticity, as depicted in the ECMWF analyses. The surface-induced vorticity structure is similar to previously documented intraseasonal variations in the monsoon flow, notably a westward-propagating vortex at low levels. In those earlier studies, the variability in low-level flow was considered to be the critical factor in producing intraseasonal fluctuations in rainfall. The current analysis shows that this vortex can be regarded as an effect of the rainfall (via surface hydrology) as well as a cause.


2006 ◽  
Vol 19 (4) ◽  
pp. 590-612 ◽  
Author(s):  
Gerald D. Bell ◽  
Muthuvel Chelliah

Abstract Interannual and multidecadal extremes in Atlantic hurricane activity are shown to result from a coherent and interrelated set of atmospheric and oceanic conditions associated with three leading modes of climate variability in the Tropics. All three modes are related to fluctuations in tropical convection, with two representing the leading multidecadal modes of convective rainfall variability, and one representing the leading interannual mode (ENSO). The tropical multidecadal modes are shown to link known fluctuations in Atlantic hurricane activity, West African monsoon rainfall, and Atlantic sea surface temperatures, to the Tropics-wide climate variability. These modes also capture an east–west seesaw in anomalous convection between the West African monsoon region and the Amazon basin, which helps to account for the interhemispheric symmetry of the 200-hPa streamfunction anomalies across the Atlantic Ocean and Africa, the 200-hPa divergent wind anomalies, and both the structure and spatial scale of the low-level tropical wind anomalies, associated with multidecadal extremes in Atlantic hurricane activity. While there are many similarities between the 1950–69 and 1995–2004 periods of above-normal Atlantic hurricane activity, important differences in the tropical climate are also identified, which indicates that the above-normal activity since 1995 does not reflect an exact return to conditions seen during the 1950s–60s. In particular, the period 1950–69 shows a strong link to the leading tropical multidecadal mode (TMM), whereas the 1995–2002 period is associated with a sharp increase in amplitude of the second leading tropical multidecadal mode (TMM2). These differences include a very strong West African monsoon circulation and near-average sea surface temperatures across the central tropical Atlantic during 1950–69, compared with a modestly enhanced West African monsoon and exceptionally warm Atlantic sea surface temperatures during 1995–2004. It is shown that the ENSO teleconnections and impacts on Atlantic hurricane activity can be substantially masked or accentuated by the leading multidecadal modes. This leads to the important result that these modes provide a substantially more complete view of the climate control over Atlantic hurricane activity during individual seasons than is afforded by ENSO alone. This result applies to understanding differences in the “apparent” ENSO teleconnections not only between the above- and below-normal hurricane decades, but also between the two sets of above-normal hurricane decades.


2007 ◽  
Vol 20 (21) ◽  
pp. 5264-5284 ◽  
Author(s):  
Samson M. Hagos ◽  
Kerry H. Cook

Abstract The observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses are used to better understand the physical processes that lead to the jump. Because of the distribution of albedo and surface moisture, a sensible heating maximum is in place over the Sahel region throughout the spring. In early May, this sensible heating drives a shallow meridional circulation and moisture convergence at the latitude of the sensible heating maximum, and this moisture is transported upward into the lower free troposphere where it diverges. During the second half of May, the supply of moisture from the boundary layer exceeds the divergence, resulting in a net supply of moisture and condensational heating into the lower troposphere. The resulting pressure gradient introduces an inertial instability, which abruptly shifts the midtropospheric meridional wind convergence maximum from the coast into the continental interior at the end of May. This in turn introduces a net total moisture convergence, net upward moisture flux and condensation in the upper troposphere, and an enhancement of precipitation in the continental interior through June. Because of the shift of the meridional convergence into the continent, condensation and precipitation along the coast gradually decline. The West African monsoon jump is an example of multiscale interaction in the climate system, in which an intraseasonal-scale event is triggered by the smooth seasonal evolution of SSTs and the solar forcing in the presence of land–sea contrast.


2012 ◽  
Vol 25 (8) ◽  
pp. 2880-2896 ◽  
Author(s):  
Bing Pu ◽  
Kerry H. Cook

Abstract The West African westerly jet is a low-level feature of the summer climatology that transports moisture from the eastern Atlantic onto the African continent at 8°–11°N. This study examines the relationship between the jet and Sahel precipitation variability in August, when both the jet and rainfall reach their seasonal maxima. Variations of the West African westerly jet are significantly positively correlated with precipitation variations over the Sahel on both interannual and decadal time scales. Three periods are identified (1958–71, 1972–87, and 1988–2009), corresponding to times with a wet Sahel–strong jet, dry Sahel–weak jet, and relatively wet Sahel–strong jet. In wet (dry) periods, enhanced (decreased) westerly moisture fluxes associated with a strong (weak) jet increase (decrease) the low-level moisture content over the Sahel, decreasing (enhancing) the stability of the atmosphere. This association between the jet and Sahel rainfall is also found in case studies of 1964, 1984, 1999, and 2007. The southerly moisture flux associated with the West African monsoon has less pronounced decadal variability than the westerly moisture flux of the West African westerly jet and weaker correlations with Sahel rainfall. When the monsoon flow is weak, for example, 1999 and 2007, the Sahel may still experience positive precipitation anomalies in association with strong westerly moisture transport by the jet. The West African westerly jet is also important for stabilizing the regional vorticity balance by introducing strong relative vorticity gradients. Northward flow advects low relative vorticity south of the jet to balance positive vorticity tendencies generated by midtropospheric condensation.


2013 ◽  
Vol 118 (22) ◽  
pp. 12,587-12,599 ◽  
Author(s):  
Bastien Dieppois ◽  
Arona Diedhiou ◽  
Alain Durand ◽  
Matthieu Fournier ◽  
Nicolas Massei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document