Residence Time in Hyporheic Bioactive Layers Explains Nutrient Uptake in Streams

Author(s):  
Eugènia Martí ◽  
Angang Li ◽  
Susana Bernal ◽  
Brady Kohler ◽  
Steven A. Thomas ◽  
...  

<p>Human activities negatively impact water quality by supplying excessive nutrients to streams. To investigate the capacity of streams to take up nutrients from the water column, we usually add nutrients to stream reaches, calculate the fraction of added nutrients that is taken up, and identify the environmental conditions controlling nutrient uptake. A common idea is that nutrient uptake increases with increasing water residence time because of increased contact time between solutes and organisms. Yet, water residence time only partially explains the temporal and spatial variability of nutrient uptake, and the reasons behind this variability are still not well understood. In this talk I’ll present a study which shows that good characterization of spatial heterogeneity of surface-subsurface flow paths and bioactive hot spots within streams is essential to understanding the mechanisms of in-stream nutrient uptake. The basis of this study arises from the use and interpretation of nutrient uptake results from the Tracer Additions for Spiraling Curve Characterization (TASCC) method. This model has been rapidly adopted to interpret in-stream nutrient spiraling metrics (e.g, nutrient uptake) over a range of concentrations from breakthrough curves (BTCs) obtained during pulse solute injection experiments. TASCC analyses often identify hysteresis in the relationship between spiraling metrics and concentration as nutrient concentration in BTCs rises and falls. The mechanisms behind these hysteresis patterns have yet to be determined. We hypothesized that difference in the time a solute is exposed to bioactive environments (i.e., biophysical opportunity) between the rising and falling limbs of BTCs causes hysteresis in TASCCs. We tested this hypothesis using nitrate empirical data from a solute addition combined with a process-based particle-tracking model representing travel times and transformations along each flow path in the water column and hyporheic zone, from which the bioactive zone comprised only a thin superficial layer. In-stream nitrate uptake was controlled by hyporheic exchange and the cumulative time nitrate spend in the bioactive layer. This bioactive residence time generally increased from the rising to the falling limb of the BTC, systematically generating hysteresis in the TASCC curves. Hysteresis decreased when nutrient uptake primarily occurred in the water column compared to the hyporheic zone, and with increasing the distance between the injection and sampling points. Hysteresis increased with the depth of the hyporheic bioactive layer. Our results indicate that the organisms responsible for nutrient uptake are confined within a thin layer in the stream sediments and that the bioactive residence time at the surface-subsurface water interface is important for nutrient uptake. I will end the talk illustrating how these findings can have important implications for in-stream nutrient uptake within the context of restoration practices addressed to modify the hydro-morphological characteristics of stream channels.</p>

2019 ◽  
Vol 62 (4) ◽  
pp. 389-407 ◽  
Author(s):  
P. G. Appleby ◽  
P. Semertzidou ◽  
G. T. Piliposian ◽  
R. C. Chiverrell ◽  
D. N. Schillereff ◽  
...  

Abstract This paper investigates the role of intervening transport processes on lake sediment records of the atmospherically deposited radionuclides 210Pb and 137Cs. Brotherswater is of particular interest to this issue in that its large catchment/lake area ratio and short water residence time are likely to amplify the influence of these processes, both from the catchment and through the water column. Brotherswater is also unique in being the site of two earlier multicore studies that, together with the present study, span a period of 4 decades. Measurements of fallout radionuclides were made on soil cores, suspended sediments and sediment cores, and the results combined with those from earlier studies to construct mass balances for 210Pb and 137Cs in Brotherswater. The results showed that catchment inputs accounted for 63% of 210Pb entering the lake. Further, just 47% of 210Pb entering the water column was delivered to the sediment record. For comparison, in an earlier study at nearby Blelham Tarn with a relatively smaller catchment but longer water residence time it was shown that 47% of 210Pb inputs were delivered via the catchment, 75% of which were delivered to the sediment record. Results from both sites suggest that 210Pb is predominantly transported on fine particulates with a mean particle size of 3–4 μm. Their relatively slow removal from the water column allows them to be transported relatively uniformly throughout the lake and may help account for the fact that simple 210Pb dating models are relatively reliable in spite of the complexities of the transport processes. Mass balance calculations for 137Cs are more complicated because of the variable fallout record. Measurements of 137Cs in the input stream and water column showed that catchment inputs are still significant 30 years after the last significant fallout (Chernobyl). Modelled results showed that catchment inputs delayed the date of peak inputs of weapons test fallout to the lake though by no more than 2 years. Although the results presented here are primarily concerned with fallout radionuclides and their reliability for dating, they also have implications for the use of sediment archives in reconstructing historical records of other atmospherically deposited substances such as trace metals or persistent organic pollutants.


2020 ◽  
Author(s):  
Roman Juras ◽  
Yuliya Vystavna ◽  
Soňa Hnilicová

<p>Hydrological response covered by disturbed forest catchments are in a focus of hydrologist last decades, mainly because the connection with widespread droughts. In this study, we compare two mountain catchments in Šumava Mts. (Czech Republic), both with small glacial lakes. Plešné lake catchment is characterised by disturbed forest by a bark beetle calamity. Contrary, Čertovo lake catchment features with undisturbed forest. Both catchments have comparable geological, climate setting and origin forest types. Stable isotopes of water were used for determining the hydrological pathways and water residence time. The results show that the state of the forest significantly affects the water balance of the catchments, but the mean residence time seems to be independent on this. On the other hand, even small changes in water residence time are important for the solutes and nutrients transport in the catchments. The lakes are fed by surface and subsurface water originating from liquid precipitation in and mostly snow in winter. The isotopic analysis helps to understand how much the snow cover affects the water balance during the hydrological year in two catchments with different forest stands.</p>


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


Ground Water ◽  
2017 ◽  
Vol 56 (3) ◽  
pp. 425-436 ◽  
Author(s):  
Suning Liu ◽  
Ting Fong May Chui

2013 ◽  
Vol 10 (11) ◽  
pp. 7689-7702 ◽  
Author(s):  
B. Gaye ◽  
B. Nagel ◽  
K. Dähnke ◽  
T. Rixen ◽  
N. Lahajnar ◽  
...  

Abstract. Sedimentation in the ocean is fed by large aggregates produced in the surface mixed layer that sink rapidly through the water column. These particles sampled by sediment traps have often been proposed to interact by disaggregation and scavenging with a pool of fine suspended matter with very slow sinking velocities and thus a long residence time. We investigated the amino acid (AA) composition and stable nitrogen isotopic ratios of suspended matter (SPM) sampled during the late SW monsoon season in the Arabian Sea and compared them to those of sinking particles to understand organic matter degradation/modification during passage through the water column. We found that AA composition of mixed layer suspended matter corresponds more to fresh plankton and their aggregates, whereas AA composition of SPM in the sub-thermocline water column deviated progressively from mixed layer composition. We conclude that suspended matter in deep waters and in the mixed layers of oligotrophic stations is dominated by fine material that has a long residence time and organic matter that is resistant to degradation. SPM in areas of high primary productivity is essentially derived from fresh plankton and thus has a strong imprint of the subsurface nitrate source, whereas SPM at oligotrophic stations and at subthermocline depths appears to exchange amino acids and nitrogen isotopes with the dissolved organic carbon (DOC) pool influencing also the δ15N values.


Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Edgaras Ivanauskas ◽  
Andrius Skersonas ◽  
Vaidotas Andrašūnas ◽  
Soukaina Elyaagoubi ◽  
Artūras Razinkovas-Baziukas

The spatial distribution of biomass of main commercial fish species was mapped to estimate the supply of a provisioning fishery service in the Curonian lagoon. Catch per unit effort (CPUE) was used as a proxy to estimate the efficiency of commercial fishing and, subsequently, the potential biomass of fishes. The relationship between distinctive characteristics of the fishing areas and corresponding commercial catches and CPUE was analyzed using multivariate analysis. The total catch values and CPUE used in the analyses were derived from the official commercial fishery records. RDE analysis was used to assess the variation of both catch and CPUE of commercial fish species, while the percentages of bottom sediment type coverage, average depth, annual salinity, and water residence time in each of the fishing squares were used as explanatory variables. This distance e-based redundancy analysis allowed for the use of non-Euclidean dissimilarity indices. Fisheries data spatial distribution map indicated the lack of coherence between the spatial patterns of commercial catches and CPUE distribution in the northern part of the lagoon. Highest CPUE values were estimated in the central-eastern part of the lagoon as compared to the western part of the lagoon where CPUE values were substantially lower. Both total catch and CPUE appeared not to be related to the type of bottom habitats statistically while being spatially correlated in-between. However, the impact of salinity and water residence time calculated using the 3D hydraulic circulation model on the distribution of both CPUE and commercial catches was statistically significant.


2018 ◽  
Vol 82 (3) ◽  
pp. 139 ◽  
Author(s):  
Roberto González-De Zayas ◽  
Martin Merino-Ibarra ◽  
Patricia M. Valdespino-Castillo ◽  
Yunier Olivera ◽  
Sergio F. Castillo-Sandoval

Through a nested suite of methods here we contrast the coexistence of different ecosystem states in a tropical coastal lagoon, the Laguna Larga, with increasing eutrophication stress between 2007 and 2009. Water temperature averaged 27.4°C in the lagoon and showed a slight positive trend during the study period. Salinity averaged 35.0±6.2, exhibiting high spatial and temporal variability, and also a slight positive trend in time. In contrast, dissolved oxygen showed a substantial decreasing trend (–0.83 ml L–1 y–1; –13.3% y–1) over the period, while nutrients increased dramatically, particularly total phosphorus (2.6 µM y–1), in both cases sustaining the progression of eutrophication in the lagoon during the three years we sampled. The Karydis nutrient load-based trophic index showed that the lagoon has a spatial pattern of increasing eutrophication from the sea and the outer sector (oligotrophic-mesotrophic) to the central (mesotrophic) and the inner sector (mesotrophic-eutrophic). Two ecosystem states were found within the lagoon. In the outer oligotrophic sector, the dominant primary producers were macroalgae, seagrasses and benthic diatoms, while mollusc assemblages were highly diverse. In the inner and central sectors (where trophic status increased toward the inner lagoon) a phytoplankton-dominated ecosystem was found where mollusc assemblages are less diverse. In spite of the progression of eutrophication in the lagoon, these two different ecosystems coexisted and remained unchanged during the study period. Apparently, the effect of water residence time, which increases dramatically toward the inner lagoon, dominated over that of nutrient loadings, which is relatively more homogeneously distributed along the lagoon. Therefore, we consider that actions that reduce the water residence time are likely the most effective management options for this and other similarly choked lagoons.


2019 ◽  
Vol 27 (4) ◽  
pp. 255-263
Author(s):  
Kseniia Y. Rybka ◽  
Nataliia M. Shchegolkova

Constructed wetlands (CW) - shallow surfaces or subsurface water bodies, planted with higher aquatic plants and designed to treat wastewater - have been actively used in world practice for the last decades. There are no universal principles for designing such systems, so for each combination of landscape (in which a CW is located) and the quality of wastewater, an individual type of CW is selected. The article provides an overview of the principles adopted in the world for calculating the main technological parameters of CWs (choice of the type of CW, calculation of the area of CW, the residence time of the water in the system, the choice of filtering medium, etc.) developed on the basis of numerous functioning objects. The recommendations given in the article are applicable for small and mediumsized CWs intended for the treatment of domestic, storm and agricultural wastewater.


Sign in / Sign up

Export Citation Format

Share Document