Morphometric analysis and mapping: ways to apply the new global catalog of Mercury’s craters

Author(s):  
Anastasia Zharkova ◽  
Alexander Kokhanov ◽  
Maria Kolenkina ◽  
Natalia Kozlova ◽  
Igor Zavyalov ◽  
...  

<p>Morphometric parameters allow us to categorize relief features and create maps of geological and geomorphological formations on Earth and other celestial bodies. Catalogs of impact craters can be extremely useful for these purposes, since diameter, shape and other characteristics of craters should be taken into account in most cases when morphometric parameters are calculated.</p><p>We work on automation of geomorphological analysis and mapping. To achieve it we used supervised classification method and MESSENGER’s data – global mosaic of Mercury, images and several DEMs [1, 2]. Supervised classification method implies training samples which are necessary to find ranges of values, associated to a certain relief form, and define boundaries between the different types of surface, which training samples represent: smooth plains, hummocky inter-crater plains, etc.</p><p>In order to analyze and zone the surface at the global level, we calculated the following morphometric parameters:<br>1. Interquartile range of the second derivative of heights [3]. This parameter gives us the global patterns of planetary relief – distribution of smooth and rough areas.<br>2. Relative topographic position (RTP) [4]. This parameter is suitable for automatic detection of concave/convex objects.<br>3. Vertical curvature. It is a measure of relative deceleration and acceleration of gravity-driven flows. Maps of vertical curvature show terraces and scarps [5].</p><p>Additionally we studied craters included in the catalog. We calculated various morphometric parameters for all of them, such as: depth, relative depth (the ratio of depth to diameter of craters), rim’s volume to bowl’s volume ratio and steepness of craters’ slopes.</p><p>As result we created thematic maps based on all of these parameters. At the detailed level, craters with complex structure (terraces and central peaks), craters located next to unusual textures [6] and multi-ringed basins were selected as objects of mapping. At the global level, we show regional differences in density of different categories of craters (with various degrees of their preservation).</p><p>Zharkova A.Yu., Kokhanov A.A., Kolenkina M.M., Kozlova N.A. and Zavyalov I.Yu. were supported by Russian Foundation for Basic Research (RFBR), project No 20-35-70019.</p><p>[1] Becker K. J., Robinson M. S., Becker T. L., Weller L. A., Edmundson K. L., Neumann G. A., Perry, M. E., Solomon, S. C. First Global Digital<br>Elevation Model of Mercury. 47th Lunar and Planetary Science Conference, 2016, LPI Contribution No. 1903, p.2959.<br>[2] Preusker F., Oberst J., Stark A., Matz K-D., Gwinner K., Roatsch T., 2017 High-Resolution Topography from MESSENGER Orbital Stereo Imaging – The Southern hemispehre. EPSC Abstracts, Vol. 11, EPSC2017-591.<br>[3] Kokhanov, A.A., Bystrov, A.Y., Kreslavsky, M.A., Matveev, E.V., Karachevtseva, I.P., 2016. Automation of morphometric measurements for planetary surface analysis and cartography. In Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 431-433. doi.org/10.5194/isprs-archives-XLI-B4-431-2016.<br>[4] Jenness, J., 2006. Topographic Position Index (TPI) v. 1.3a, Jenness Enterprices. url: http://www.jennessent.com/arcview/tpi.htm<br>[5] Florinsky, I.V. An illustrated introduction to general geomorphometry. Progress in Physical Geography, 2017, 41: 723–752. https://journals.sagepub.com/doi/10.1177/0309133317733667 <br>[6] Zharkova A.Yu., Kreslavsky M.A., Head J.W., Kokhanov A.A. Regolith textures on Mercury: Comparison with the Moon. Icarus, Volume 351, 2020, 113945, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2020.113945</p>

2009 ◽  
Vol 33 (2) ◽  
pp. 251-287 ◽  
Author(s):  
Stephen Tooth

Research conducted at the interfaces between traditionally disparate academic disciplines can provide fresh perspectives that catalyse novel research approaches and themes. With particular reference to publications from the last few years, this report focuses on a selection of emerging research themes that highlight the growing links between arid geomorphology and other disciplines, including ecology and soil science, sedimentology and petroleum geology, and planetary science. Three themes are addressed: (1) the role of fire in arid geomorphological systems, characterized by investigations that tend to focus on surface processes and landforms at relatively small spatial scales (plot to short channel reach) and short timescales (hours to years); (2) arid fluvial sedimentary systems, characterized by investigations that commonly focus on processes, landforms and sedimentary products at larger spatial scales (channel reach to basin) and longer timescales (years to millions of years); and (3) arid geomorphology on Mars, commonly characterized by process-landform investigations at very large spatial scales (entire physiographic regions to full planetary contexts) and yet longer timescales (millions to billions of years). For each theme, research gaps are identified, which provides an indication of where the research frontier currently lies. In particular, geomorphological research on Mars and other planetary bodies represents a new physical and intellectual frontier that offers great potential for further interplay with Earth landscape studies in arid and other climatic regions. While there are concerns about the present health and direction of geomorphology and physical geography, this rich diversity of themes provides evidence for vigorous and focused research in arid geomorphology.


2020 ◽  
Vol 10 (11) ◽  
pp. 3773
Author(s):  
Soyeon Park ◽  
No-Wook Park

As the performance of supervised classification using convolutional neural networks (CNNs) are affected significantly by training patches, it is necessary to analyze the effects of the information content of training patches in patch-based classification. The objective of this study is to quantitatively investigate the effects of class purity of a training patch on performance of crop classification. Here, class purity that refers to a degree of compositional homogeneity of classes within a training patch is considered as a primary factor for the quantification of information conveyed by training patches. New quantitative indices for class homogeneity and variations of local class homogeneity over the study area are presented to characterize the spatial homogeneity of the study area. Crop classification using 2D-CNN was conducted in two regions (Anbandegi in Korea and Illinois in United States) with distinctive spatial distributions of crops and class homogeneity over the area to highlight the effect of class purity of a training patch. In the Anbandegi region with high class homogeneity, superior classification accuracy was obtained when using large size training patches with high class purity (7.1%p improvement in overall accuracy over classification with the smallest patch size and the lowest class purity). Training patches with high class purity could yield a better identification of homogenous crop parcels. In contrast, using small size training patches with low class purity yielded the highest classification accuracy in the Illinois region with low class homogeneity (19.8%p improvement in overall accuracy over classification with the largest patch size and the highest class purity). Training patches with low class purity could provide useful information for the identification of diverse crop parcels. The results indicate that training samples in patch-based classification should be selected based on the class purity that reflects the local class homogeneity of the study area.


2012 ◽  
Vol 546-547 ◽  
pp. 542-547 ◽  
Author(s):  
Guang Wei Zeng ◽  
Gui Fen Chen ◽  
Chu Nan Li ◽  
Jiao Ye

ERDAS IMAGINE is a remote sensing image processing system developed by the United States.The paper using ERDAS to classified the remote sensing of Land-sat TM image data by supervised classification method and unsupervised classification method, Using the Yushu City remote sensing image of Jilin Province as the trial data, and classified the forest, arable land and water from the remote sensing images, compared the test data of the supervised classification and unsupervised classification method, shows that the supervised classification method can be better to solute the questions "with the spectrum of foreign body" and "synonyms spectrum" than unsupervised classification method, and optimize classification images, improved information extraction accuracy. The application shows the classification result is consistent with the actual situation and it laid the foundation for land to have the rational planning and use.


Sign in / Sign up

Export Citation Format

Share Document