Remote-predictive geologic mapping of the Reykjanes Ridge: Implications for the volcanic and structural evolution of a slow-spreading Mid-Ocean Ridge

Author(s):  
Sofia Panasiuk ◽  
Melissa O. Anderson ◽  
Ármann Höskuldsson ◽  
Fernando Martinez ◽  
Dominik Pałgan

<p>The Reykjanes Ridge is a spreading center that presents an opportunity to track the dynamic formation of structural and volcanic features at an asymmetric slow-spreading plate boundary. The ridge spans the northern ~1000 km of the Mid Atlantic Ridge and has been spreading at a full spreading rate of ~20 mm/year [1]. The characteristic along-ridge basement depth, crustal thickness, and chemical gradient have been variably attributed to an active mantle plume beneath Iceland, or a passive mantle anomaly pre-dating the rifting [1]. A unique feature of the ridge is that it spreads obliquely to the spreading axis: a consequence of the change in spreading direction from ~125<sup>o </sup>to ~100<sup>o</sup> due to the failure of the triple junction between the Greenland, Eurasian, and North American plates 37 Mya [2]. Along with the sudden change in orientation, disjunct ridge segments were formed and separated by transform faults which have been continuously eliminating from north to south, thereby re-establishing the original linear geometry of the ridge [1]. The Bight Transform Zone is the final remaining transform fault and constitutes the boundary between the southern Reykjanes Ridge and the northern Mid-Atlantic Ridge. Despite the termination of strike-slip transform fault motion, the ridge remains in a state of active tectonic deformation as demonstrated by the time-dependant orientations of linear structures, lengths of spreading segments, and deviation from the previously asserted linear continuity of the ridge. Investigating the relationship between structures, volcanism, and regional geodynamics is possible with the application of a novel remote-predictive geological mapping method based on interpretations from newly acquired bathymetric and acoustic backscatter data. Notably, the bathymetric data provides significant high-resolution coverage of both on-axis and off-axis regions, allowing us to track the evolution of the ridge for up to 13 Mya. The acoustic backscatter data aids in the interpretation of geologic features and terrains whose distribution and morphology reflect both present-day and historic ridge dynamics. This analysis will produce new insight into the on-going first and second-order deformation of the Reykjanes Ridge, its controls, and its effects on diffuse low-temperature vs. focused high-temperature hydrothermal venting.</p><p>[1] Martinez et al., 2020. Reykjanes Ridge evolution: Effects of plate kinematics, small-scale upper mantle convection, and a regional mantle gradient. Earth-Science Reviews.</p><p>[2] Jones, Stephen M., 2003. Test of a ridge–plume interaction model using oceanic crustal structure around Iceland. Earth and Planetary Science Letters.</p>

1978 ◽  
Vol 15 (12) ◽  
pp. 1930-1940 ◽  
Author(s):  
M. J. Clark ◽  
J. M. Hall ◽  
J. W. Peirce

Rock and paleomagnetic measurements have been made on a set of 54 basalts dredged from 17 stations located within the central valley of the Cayman Trough. Seventeen of the samples could be oriented with respect to the in situ vertical by the use of lava cooling ledges and stalactites.Peak remanent intensities in the Cayman Trough are lower than peak Mid-Atlantic Ridge values by a factor of 2 or 3 even after allowance is made for the latitudinal variation in geomagnetic field intensity. This difference is likely to be the result of the combined effects of relatively low saturation magnetization and more advanced low temperature oxidation of titanomagnetite in the Cayman Trough basalts.Five young, reversely magnetized basalts, similar to those found on the Mid-Atlantic Ridge, occur in the Cayman Trough sample set.Plots of the magnetic parameters of the pillow basalts with distance from the axis of the trough show broad highs or lows associated with the axis. Our interpretation is that crustal formation in the central valley has occurred recently, but it has either been rather diffuse or is now much disturbed tectonically on a small scale in comparison with the Mid-Atlantic Ridge. Analysis of the distribution of Curie temperatures suggests that crustal accretion has been slow (0.1–0.4 cm year−1 half-rate) and may have ceased in the area studied at about 0.6 Ma BP.


1975 ◽  
Vol 12 (3) ◽  
pp. 337-346 ◽  
Author(s):  
P. J. Bhattacharyya ◽  
R. D. Hyndman ◽  
M. J. Keen

Bathymetric and magnetic data obtained from the Mid-Atlantic Ridge near 45°N have been analyzed numerically to determine trends, offsets and local structure. The estimates of regional trends in the data reveal that the average structural trend in this area is 17°E of north, made up of nearly north–south segments periodically offset by small right lateral displacements. The east–west offsets, not always visually manifest in contour maps of the data have been located by a cross-correlation scheme. Frequent small offsets may be the way a ridge crest accommodates to a spreading direction not perpendicular to the general trend of the crest. There is evidence for an old, now dead spreading center to the west of the median valley. This old center with an orientation of about 15°W, terminating in a right lateral transform fault has been abandoned in favor of frequent small offsets which provide smaller resistance to spreading.


2020 ◽  
Author(s):  
Zhiteng Yu ◽  
Satish C. Singh ◽  
Emma Gregory ◽  
Wayne Crawford ◽  
Marcia Maia ◽  
...  

<p>The Romanche Transform Fault (TF) in the equatorial Atlantic Ocean is the largest oceanic transform fault on Earth, offsetting the slow-spreading (2 cm/ yr) Mid-Atlantic Ridge (MAR) by 900-km and producing a maximum age contrast at the Ridge-Transform Intersection (RTI) of 45 Myr. This offset could cause a large thermal variation in the lithosphere around the RTI, but it is not known how this thermal variation would manifest itself. Here we present a ~21-day-long micro-earthquake study using a temporary deployment of 19 ocean-bottom seismometers (OBSs) during the 2019 SMARTIES cruise. 1363 earthquakes were detected on at least three OBSs and 622 could be located, of which 351 have high location accuracy (mean semi-major-axis of 3.9 km).</p><p>Linear (HYPOSAT) and non-linear (NonLinLoc) location algorithms reveal a similar earthquake distribution. Two event groups cluster at depths of 1) 0 km to ~18 km and 2) ~20 km to 30 km. Along the Romanche TF, micro-earthquakes are located beneath the southern border of the 30 km wide transform valley; no events are observed beneath the central or northern sections of the valley. These events' depths increase rapidly and linearly from a few km at the RTI to 30 km at 40 km along the transform fault, indicating a rapid increase in the thickness of the seismogenic zone (and lithosphere) along the transform fault. The presence of earthquakes on the southern border of the transform fault, which is younger and hence warmer, suggests that these events, and hence the seismogenic zone, follow an isotherm separating the brittle-ductile boundary. The absence of seismicity beneath the centre and northern boundary of the transform fault could be due to a much colder lithosphere and hence deeper ductile-brittle boundary.  </p><p>An aseismic gap exists beneath the pull-apart basin observed on bathymetry data. Beneath the RTI, earthquakes mainly occur in the 0-18 km depth range. Eight well-constrained focal mechanisms, derived from P-wave polarities, suggest that strike-slip faulting dominates along the transform fault. Normal faults are also observed, which may be attributed to an active detachment fault or pull-apart basin formation.</p><p>From the RTI to the tip of the southern MAR segment, micro-earthquakes show an undulating focal depth distribution from north to south. They can be summarized into three clustering groups: the RTI, the 16.6°W group, and the 16.2°W group. Micro-earthquakes beneath the MAR are mainly located in the axial valley. Events in the 16.6°W group mainly occur in the mantle at depths of 12-20 km, whereas those in the 16.2°W group are located at shallow depths of 2-12 km, which is similar to that observed along other slow-spreading Mid-Ocean Ridges. This evidence indicates that there are significant variations in the along-axis thermal structure of the lithosphere along the rift axis.</p><p>ZY acknowledges the China Postdoctoral Science Foundation (2019M652041, BX20180080); DB acknowledges funding PRIN2017KY5ZX8.</p>


1993 ◽  
Vol 15 (3) ◽  
pp. 153-200 ◽  
Author(s):  
Jean-Christophe Semp�r� ◽  
Jian Lin ◽  
Holly S. Brown ◽  
Hans Schouten ◽  
G. M. Purdy

2016 ◽  
Author(s):  
Ross P. Meyer ◽  
◽  
Joe H. Haxel ◽  
Robert P. Dziak ◽  
Deborah K. Smith

2021 ◽  
Author(s):  
Pauline Le Maire ◽  
Denis Thieblemont ◽  
Marc Munschy ◽  
Guillaume Martelet ◽  
Geoffroy Mohn

<p>Continent-Ocean Transitions (COT) and ultra-slow spreading ridges, floored by wide area of exhumed serpentinized mantle, bear strong amplitude magnetic lineations. However, whether these anomalies are linked to inversions of the direction of the magnetization (therefore characterized as isochrones of seafloor spreading) or to structural and lithological contrasts remains an open question. Generally, marine magnetic data acquired at sea surface along profiles, are too low resolution to image the intensity variations of the magnetic field at a kilometric scale. Performing a dense deep tow magnetic survey at a present-day COT or ultra-slow spreading system would be better to determine the sources of the magnetic signal but remains expensive. To go ahead, a valuable alternative to address these questions is to record the magnetic signal on ophiolite representing remnants of COT and oceanic systems sampled in orogenic system. We worked on the Chenaillet Ophiolite (French Alps), which represents a fossil COT or ultra-slow spreading system integrated to the Alpine orogeny. This ophiolite escaped high-pressure metamorphism and has only been weakly deformed during Alpine orogeny, preserving its pre-orogenic structure.</p><p>We performed an UAV magnetic survey using fluxgate magnetometers in complex conditions due to the altitude (> 1800 m), the strong topography variations and the weather conditions (negative temperatures, snow). Despite these difficulties, which highlight the viability of UAV for geophysical measurements, a survey of 20 square kilometers with 219 km of profiling was completed 100 m above ground level. Flight line spacing is 100 m above the ophiolitic basement and 200 m above the sedimentary units. Another magnetic UAV survey was flown with another UAV to map a small area 10 m above ground level. Magnetic anomaly maps were computed after standard processing (e.g., calibration/compensation, temporal variation and regional magnetic field corrections, levelling).</p><p>Our first results evidence well-defined magnetic anomalies clearly linked to serpentinite. This shows that the magnetic signal is of sufficient resolution to contribute to a revision of the cartography of the massif combining geological observations and magnetic data.</p><p>In addition, the magnetic susceptibility was measured on 60 outcrops, to support interpretation.</p><p>In this presentation, we focus on the magnetic acquisition campaigns, processing and 2D/3D interpretations by forward modelling and data inversion. Lastly, two items are discussed: 1) contribution of magnetic UAV surveys for geological mapping; and 2) implication of the results on the Chenaillet massif to discuss the contribution of magnetic mapping to the understanding of the TOC or ultra-slow spreading system.</p>


Geology ◽  
2021 ◽  
Author(s):  
Toru Yamasaki ◽  
Gen Shimoda ◽  
Kenichiro Tani ◽  
Jinichiro Maeda ◽  
Futoshi Nanayama

Recent reconstructions of global plate motions suggest that the Izanagi-Pacific Ridge was subducted along the eastern margin of Eurasia at ca. 50 Ma. In the Hidaka magmatic zone (HMZ), which was located at the northeastern end of the Eurasian plate, three magmatic pulses occurred (46–45, 40–36, and 19–18 Ma). We report whole-rock geochemical and Sr-Nd-Pb isotopic data for 36 Ma high-Sr/Y (adakitic) rocks from the HMZ and show that these rocks formed by partial melting of oceanic crust and were emplaced as near-trench intrusions during ridge subduction. We reevaluate the nature of plutonic rocks in the HMZ and show that both the 46–45 and 40–36 Ma granitoids have essentially identical geochemical features. The distribution of plutons and magmatic cessation between 45 and 40 Ma are best explained by subduction of a ridge-transform intersection with a large offset of the ridge axis. The boundary between the Eocene granitoids corresponds to the position of a paleo–transform fault, and adakitic magmatism was caused by partial melting triggered by slab tearing at an overlapping spreading center. The paleoridge-transform configuration coincides with the locations of later large faults and a peridotite body.


Sign in / Sign up

Export Citation Format

Share Document