The Lorenz Energy Cycle: Trends and the Impact of Modes of Climate Variability

Author(s):  
Qiyun Ma ◽  
Valerio Lembo ◽  
Christian Franzke

<p>The atmospheric circulation is driven by heat transport from the tropics to the polar regions, implying energy conversions between available potential and kinetic energy through various mechanisms. The processes of energy transformations can be quantitatively investigated in the global climate system through the Lorenz energy cycle formalism. In this study, we examine these variations and the impacts of modes of climate variability on the Lorenz energy cycle by using reanalysis data from the Japanese Meteorological Agency (JRA-55). We show that the atmospheric circulation is overall becoming more energetic and efficient. For instance, we find a statistically significant trend in the eddy available potential energy, especially in the transient eddy available potential energy in the Southern Hemisphere. We find significant trends in the conversion rates between zonal available potential and kinetic energy, consistent with an expansion of the Hadley cell, and in the conversion rates between eddy available potential and kinetic energy, suggesting an increase in mid-latitudinal baroclinic instability. We also show that planetary-scale waves dominate the stationary eddy energy, while synoptic-scale waves dominate the transient eddy energy with a significant increasing trend. Our results suggest that interannual variability of the Lorenz energy cycle is determined by modes of climate variability. We find that significant global and hemispheric energy fluctuations are caused by the El Nino-Southern Oscillation, the Arctic Oscillation, the Southern Annular Mode, and the meridional temperature gradient over the Southern Hemisphere.</p>

2014 ◽  
Vol 5 (2) ◽  
pp. 1463-1490
Author(s):  
M.-A. Knietzsch ◽  
V. Lucarini ◽  
F. Lunkeit

Abstract. A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.


2012 ◽  
Vol 42 (12) ◽  
pp. 2185-2205 ◽  
Author(s):  
Jin-Song von Storch ◽  
Carsten Eden ◽  
Irina Fast ◽  
Helmuth Haak ◽  
Daniel Hernández-Deckers ◽  
...  

Abstract This paper presents an estimate of the oceanic Lorenz energy cycle derived from a simulation forced by 6-hourly fluxes obtained from NCEP–NCAR reanalysis-1. The total rate of energy generation amounts to 6.6 TW, of which 1.9 TW is generated by the time-mean winds and 2.2 TW by the time-varying winds. The dissipation of kinetic energy amounts to 4.4 TW, of which 3 TW originate from the dissipation of eddy kinetic energy. The energy exchange between reservoirs is dominated by the baroclinic pathway and the pathway that distributes the energy generated by the time-mean winds. The former converts 0.7 to 0.8 TW mean available potential energy to eddy available potential energy and finally to eddy kinetic energy, whereas the latter converts 0.5 TW mean kinetic energy to mean available potential energy. This energy cycle differs from the atmospheric one in two aspects. First, the generation of the mean kinetic and mean available potential energy is each, to a first approximation, balanced by the dissipation. The interaction of the oceanic general circulation with mesoscale eddies is hence less crucial than the corresponding interaction in the atmosphere. Second, the baroclinic pathway in the ocean is facilitated not only by the surface buoyancy flux but also by the winds through a conversion of 0.5 TW mean kinetic energy to mean available potential energy. In the atmosphere, the respective conversion is almost absent and the baroclinic energy pathway is driven solely by the differential heating.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
V. S. Travkin ◽  
◽  
T. V. Belonenko ◽  

Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by high activity of mesoscale eddies. The study is aimed at analyzing different components of general energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of these characteristics. Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume available potential and kinetic energy were studied. The mesoscale activity of eddies in winter is higher than in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015 J/year. It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion rates of the mean kinetic energy into the vortex kinetic one and the mean available potential energy into the vortex available potential one (barotropic and baroclinic instability) were analyzed. It is shown that the first type of transformation dominates in summer, while the second one is characterized by its increase in winter. Conclusions. The vertical profile shows that the kinetic energy of eddies in winter is higher than in summer. The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. An increase in the available potential energy is confirmed by a significant positive trend and by a decrease in the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the tripole one – in summer. The barotropic instability highest intensity is observed in summer. The baroclinic instability is characterized by intensification of the regime in winter that is associated with weakening of stratification in this period owing to winter convection.


2012 ◽  
Vol 69 (9) ◽  
pp. 2718-2732 ◽  
Author(s):  
C. A. F. Marques ◽  
J. M. Castanheira

Abstract An energetics formulation is here introduced that enables an explicit evaluation for the conversion rates between available potential energy and kinetic energy, the nonlinear interactions of both energy forms, and their generation and dissipation rates, in both the zonal wavenumber and vertical mode domains. The conversion rates between available potential energy and kinetic energy are further decomposed into the contributions by the rotational (Rossby) and divergent (gravity) components of the circulation field. The computed energy terms allow one to formulate a detailed energy cycle describing the flow of energy among the zonal mean and eddy components, and also among the barotropic and baroclinic components. This new energetics formulation is a development of the 3D normal-mode energetics scheme. The new formulation is applied on an assessment of the energetics of winter (December–February) circulation in the 40-yr ECMWF Re-Analysis (ERA-40), the 25-yr Japan Meteorological Agency Reanalysis (JRA-25), and the NCEP–Department of Energy Reanalysis 2 (NCEP-R2) datasets.


2014 ◽  
Vol 71 (4) ◽  
pp. 1480-1493 ◽  
Author(s):  
David W. J. Thompson ◽  
Jonathan D. Woodworth

Abstract The leading patterns of large-scale climate variability in the Southern Hemisphere are examined in the context of extratropical kinetic energy. It is argued that variability in the Southern Hemisphere extratropical flow can be viewed in the context of two distinct and largely independent structures, both of which exhibit a high degree of annularity: 1) a barotropic structure that dominates the variance in the zonal-mean kinetic energy and 2) a baroclinic structure that dominates the variance in the eddy kinetic energy. The former structure corresponds to the southern annular mode (SAM) and has been extensively examined in the literature. The latter structure emerges as the leading principal component time series of eddy kinetic energy and has received seemingly little attention in previous work. The two structures play very different roles in cycling energy through the extratropical troposphere. The SAM is associated primarily with variability in the meridional propagation of wave activity, has a surprisingly weak signature in the eddy fluxes of heat, and can be modeled as Gaussian red noise with an e-folding time scale of approximately 10 days. The baroclinic annular structure is associated primarily with variations in the amplitude of vertically propagating waves, has a very weak signature in the wave fluxes of momentum, and exhibits marked quasi periodicity on time scales of approximately 25–30 days. Implications for large-scale climate variability are discussed.


Author(s):  
Jin-Song von Storch

The energetics considerations based on Lorenz’s available potential energy A focus on identification and quantification of processes capable of converting external energy sources into the kinetic energy of atmospheric and oceanic general circulations. Generally, these considerations consist of: (a) identifying the relevant energy compartments from which energy can be converted against friction to kinetic energy of motions of interests; (b) formulating for these energy compartments budget equations that describe all possible energy pathways; and (c) identifying the dominant energy pathways using realistic data. In order to obtain a more detailed description of energy pathways, a partitioning of motions, for example, into a “mean” and an “eddy” component, or into a diabatic and an adiabatic component, is used. Since the budget equations do not always suggest the relative importance of all possible pathways, often not even the directions, data that describe the atmospheric and the oceanic state in a sufficiently accurate manner are needed for evaluating the energy pathways. Apart from the complication due to different expressions of A, ranging from the original definition by Lorenz in 1955 to its approximations and to more generally defined forms, one has to balance the complexity of the respective budget equations that allows the evaluation of more possible energy pathways, with the quality of data available that allows sufficiently accurate estimates of energy pathways. With regard to the atmosphere, our knowledge, as inferred from the four-box Lorenz energy cycle, has consolidated in the last two decades, by, among other means, using data assimilation products obtained by combining observations with realistic atmospheric general circulation models (AGCMs). The eddy kinetic energy, amounting to slightly less than 50% of the total kinetic energy, is supported against friction through a baroclinic pathway “fueled” by the latitudinally dependent diabatic heating. The mean kinetic energy is supported against friction by converting eddy kinetic energy via inverse cascades. For the ocean, our knowledge is still emerging. The description through the four-box Lorenz energy cycle is approximative and was only estimated from a simulation of a 0.1° oceanic general circulation models (OGCM) realistically forced at the sea surface, rather than from a data assimilation product. The estimates obtained so far suggest that the oceanic eddy kinetic energy, amounting almost 75% of the total oceanic kinetic energy, is supported against friction through a baroclinic pathway similar to that in the atmosphere. However, the oceanic baroclinic pathway is “fueled” to a considerable extent by converting mean kinetic energy supported by winds into mean available potential energy. Winds are also the direct source of the kinetic energy of the mean circulation, without involving noticeable inverse cascades from transients, at least not for the ocean as a whole. The energetics of oceanic general circulation can also be examined by separating diabatic from adiabatic processes. Such a consideration is thought to be more appropriate for understanding the energetics of the oceanic meridional overturning circulation (MOC), since this circulation is sensitive to density changes induced by diabatic mixing. Further work is needed to quantify the respective energy pathways using realistic data.


2009 ◽  
Vol 66 (3) ◽  
pp. 647-666 ◽  
Author(s):  
Erich Becker

Abstract The concept of a mechanistic general circulation model that explicitly simulates the gravity wave drag in the extratropical upper mesosphere in a self-consistent fashion is proposed. The methodology consists of 1) a standard spectral dynamical core with high resolution, 2) idealized formulations of radiative and latent heating, and 3) a hydrodynamically consistent turbulent diffusion scheme with the diffusion coefficients based on Smagorinsky’s generalized mixing-length formulation and scaled by the Richardson criterion. The model reproduces various mean and variable features of the wave-driven general circulation from the boundary layer to the mesopause region during January. The dissipation of mesoscale kinetic energy (defined as the frictional heating due to the mesoscale flow) in the extratropical troposphere is found to indicate the tropospheric gravity wave sources relevant for the mesosphere/lower thermosphere. This motivates a sensitivity experiment in which the large-scale differential heating is perturbed such that the Lorenz energy cycle as measured by the globally integrated frictional heating becomes stronger. As a result, both the resolved gravity wave activity and the dissipation of mesoscale kinetic energy in the extratropical troposphere are amplified. These changes have strong remote effects in the summer mesopause region, where the gravity wave drag, the residual meridional wind, and the frictional heating shift to lower altitudes. Furthermore, temperatures decrease below the summer mesopause and increase farther up, which is accompanied by an anomalous eastward wind component around the mesopause.


2014 ◽  
Vol 740 ◽  
pp. 114-135 ◽  
Author(s):  
Alberto Scotti ◽  
Brian White

AbstractA local available potential energy (APE) density useful as suitable diagnostic tool in turbulent stratified flows is considered under the Boussinesq approximation. The local APE is positive, and in the limit of infinitesimal perturbation from an equilibrium state recovers the Lorenz energy cycle definition of APE. In a turbulent stratified flow, the APE can be Reynolds-decomposed into non-trivial mean and turbulent components, which are connected to the mean and turbulent kinetic energy by suitably defined fluxes. We show that the turbulent buoyancy flux $\overline{w'b'}$ and the rate of production of turbulent APE coincide only under very special circumstances. The framework is applied to derive some global bounds on the mixing efficiency of some representative flows.


2004 ◽  
Vol 39 ◽  
pp. 127-132 ◽  
Author(s):  
Paul A. Mayewski ◽  
Kirk A. Maasch ◽  
James W. C. White ◽  
Eric J. Steig ◽  
Eric Meyerson ◽  
...  

AbstractAnnually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Niño events. During the period AD 1700–1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From AD 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Niño events increased during the mode switch. The onset of the AD 1700–1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document