Climate change impacts on the hydrology of south-western Australia

Author(s):  
Don McFarlane

<p>Climate change has profoundly affected the hydrology of south-western Australia since at least 1975. It took over a decade before the signal could be detected from annual variability. The impacts of rainfall reductions were exacerbated by higher temperatures and a decrease in wet periods when most recharge and runoff occurred. As a rule-of-thumb, runoff and recharge reduced by 3 percent for each percent reduction in rainfall.</p><p>Reductions in runoff were driven by falling groundwater levels. Stream- and dryland-salinity required levels be monitored, otherwise this driver would have gone unnoticed.</p><p>Runoff into reservoirs has almost ceased as processes irreversibly changed. Using historical records to estimate future runoff had limited application because of non-stationary processes.</p><p>While water resources have diminished, the threats posed by dryland salinity, stream salinity, flooding and waterlogging have decreased. While winter flood risks have dramatically reduced, summer flood risks appear to have increased.   </p><p>Almost all GCMs project an even drier and warmer future. Perth (population 2m) has avoided a ‘Day Zero’ by the rapid expansion of shallow- and deep-groundwater extraction, and seawater desalination. Highly treated wastewater has started to be added to augment drinking water aquifers.</p><p>Recharge under tree canopies have been most reduced. This is due to greater interception losses because showers have largely replaced heavy rain, and trees using a higher proportion of rainfall. Rainfall intensities, at least for long durations, have decreased despite the fear that higher sea surface temperatures (SST) and a warmer atmosphere will result in more intense rainfall. While SSTs have started to rise, there are complications related to El Niño– Southern Oscillation, the Indian Ocean Dipole and the warm Leeuwin Current that flows down the coast of Western Australia. This current results in much higher rainfall than would be expected and may weaken if El Niño becomes stronger and/or more frequent.  </p><p>As well as impacting water resources and rates of land degradation, climate change has affected ecosystems and industries. Abnormally hot and dry years have resulted in the deaths of trees able to withstand harsh Mediterranean summers. Wetlands have dried and groundwater-dependent ecosystems have been lost. Cereal crops are now grown in regions that used to be severely affected by soil waterlogging.  Tree plantations have become unviable due to slow wood growth and deaths.</p><p>Water restriction may have exacerbated urban heat islands as outdoor areas are irrigated less often, losing evaporative cooling. Fortunately, there are opportunities for diverting stormwater and treated wastewater to urban aquifers that provide a non-potable source of water for self-supply.</p><p>Government regulations and planning that have been set during the pre-1975 climate are struggling to keep pace with changes in understanding and future predictions. Restrictions tackling old problems are not being replaced with those needed for new issues. It is difficult to allocate water on a fixed volumetric basis when runoff and recharge are highly impacted. Society is also having to accept water reuse more quickly than is ideal.   </p><p>Lessons learned in SW Australia may be applicable to other Mediterranean climate zones.</p>

Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 492
Author(s):  
Sonja Bauer

Due to water scarcity, which is worsening due to climate change, rural areas often face the challenge of rural exoduses. Limited water resources restrict local farmers as the opportunities for cultivation in the fields are reduced. This makes rural areas increasingly unattractive. To strengthen rural areas, sustainable water management with a focus on water-reuse is required. Since treated wastewater is a daily resource with calculable quantities available, reused water can contribute to the sustainable strengthening of a region. Therefore, an analysis of water-reuse potentials must be conducted to develop a water-reuse concept and thus increase the application of reused water. For this purpose, a case study of Wuwei as a rural and water-scarce region in China was chosen. By using a geoinformation system, the unfulfilled water-reuse potential can be identified by intersecting the results of the analysis regarding the current water supply and disposal situation with spatial and regional information, such as population data. Hence, the study presents the potential to increase wastewater treatment and water-reuse for, e.g., agricultural irrigation. It is shown that, in the best case, reused water can be increased from 5479 m3 per day to 207,461 m3 per day. Resource efficiency can be further increased by combining water-reuse concepts with land-use strategies adapted to climate change. This will ensure a more sustainable water supply in the future.


2014 ◽  
Vol 18 (9) ◽  
pp. 3591-3614 ◽  
Author(s):  
S. A. Islam ◽  
M. A. Bari ◽  
A. H. M. F. Anwar

Abstract. Reduction of rainfall and runoff in recent years across southwest Western Australia (SWWA) has attracted attention to the climate change impact on water resources and water availability in this region. In this paper, the hydrologic impact of climate change on the Murray–Hotham catchment in SWWA has been investigated using a multi-model ensemble approach through projection of rainfall and runoff for the periods mid (2046–2065) and late (2081–2100) this century. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from the Australian Water Availability Project (AWAP). Downscaled and bias-corrected rainfall data from 11 general circulation models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of the climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to the observed past (1961–1980) and the resulting runoff reduction was found to be 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and the corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall areas compared to low rainfall areas. Temporal distribution of rainfall and runoff indicate that high rainfall events in the catchment reduced significantly and further reductions are projected, resulting in significant runoff reductions. A catchment scenario map has been developed by plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for the observed and projected periods. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, the considerable uncertainty involved in this study though ensemble mean was used to explain the findings.


Author(s):  
A. A. Alazzy ◽  
H. Lü ◽  
Y. Zhu

Abstract. Syria is one of the Middle Eastern countries that suffer from scarcity in water resources availability, which affects the growth and development of economic activities. In this research, the Water Evaluation and Planning (WEAP) model is applied to evaluate future water demand in the Euphrates and Aleppo basin (EAB), Syria, by taking into account the climate change that may affect water demand in the domestic, industrial, and agricultural sectors until 2050. The climate change projections of temperature and precipitation were assessed using a new version of the MAGICC/SCENGEN tool with two greenhouse gas emissions scenarios (A2 and B2) of the Intergovernmental Panel on Climate Change (IPCC). Based on the results of IPCC (A2, B2) scenarios projections, the EAB basin is likely to face a decrease in precipitation amount by 21 % according to A2 and by 12 % according to B2, while temperature would increase by about 2.5 °C according to A2 and by 2 °C according to B2. Within the three scenarios adopted in this research: (1) available technology development; (2) increasing treated wastewater in agriculture and industry sectors; (3) and two combined scenarios, the results of the simulation demonstrated that the proposed scenarios are effective for reducing stressors on EAB’s water resources, but are not sustainable to bridge the gap between demand-supply by the year 2050, which leads to the deterioration of the available water resources.


2019 ◽  
Vol 40 (3) ◽  
pp. 427-443 ◽  
Author(s):  
Timo Assmuth ◽  
Tanja Dubrovin ◽  
Jari Lyytimäki

AbstractHuman health risks in dealing with floods in a river basin in South-Western Finland are analysed as an example of scientific and practical challenges in systemic adaptation to climate change and in integrated governance of water resources. The analysis is based on case reports and plans, on literature studies and on conceptual models of risks and risk management. Flood risks in the Northern European study area are aggravated by melt- and storm-water runoff, ice jams and coastal flooding. Flood risk assessment is linked with management plans based on EU directives as applied in the case area. National risk management policies and procedures of increasing scope and depth have been devised for climate change, water resources and overall safety, but an integrated approach to health risks is still largely missing. The same is true of surveys of perceived flood risks, and participatory deliberation and collaborative planning procedures for flood risk management in the case area, specifically for adaptive lake regulation. Health impacts, risks and benefits, socio-economic and systemic risks, and over-arching prevention, adaptation and compensation measures are not fully included. We propose a systematic framework for these extensions. Particular attention needs to be given to health risks due to flooding, e.g. from water contamination, moist buildings, mental stress and infrastructure damage and also from management actions. Uncertainties and ambiguities about risks present continuing challenges. It is concluded that health aspects of flooding are complex and need to be better included in assessment and control, to develop more integrated and adaptive systemic risk governance.


2008 ◽  
Vol 3 (2) ◽  
Author(s):  
A. A. R. Arar

Jordan is situated in an arid to semi- arid zone with low and unpredictable rainfall. The country has an exceptionally low per capita water supply at less them 200 cubic meters per annum; one of the lowest on record world wide. This situation is exacerbated by increasing demand for water resulting from rapid growth in population due in part to the arrival of refugees and displaced persons, increased urbanization. improved standard of living and the continuing demands for irrigation. The gap between total demand and water supply is estimated by the Ministry of Water and Irrigation (MWI) at about 336 MCM in 2005 and this to increase to about 434 MCM in 2020. To minimize the negative impact of this shortage one of the country water strategy is to increase the water supply through maximizing the production of treated wastewater and its use for irrigation / industry and other suitable uses in order to protect the environment and to save fresh water for drinking purposes. At present 90% of the population are served by piped water and 65% by sewerage network with 22 treatment plants producing the equivalent to 10% of the total water resources. This will increase to reach, in 2020, about 18.6% of the total water resources. To ensure the implementation of the reuse projects successfully the country has created the Water Use and Environment Unit supported by the necessary legislative and institutional frame work and human resources development programme and by the establishment of the high level National Water Reuse Co-ordinating Committee, representing all those Concerned in the government agencies and the private sector.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 17-25 ◽  
Author(s):  
J. Pasch ◽  
P. Macy

Jordan's population is projected to reach 6.5 million by 2010. Limited water does not meet present or projected demands, groundwater levels are dropping, and industrialization is increasing pressure on water resources and the environment. The agricultural sector alone uses approximately 70% of total water resources. Wastewater represents a resource that can help fill Jordan's gap between supply and demand. While approximately 80% of the over 80 MCM of wastewater/yr is currently reused, only a fraction is formalized with permitting and adherence to reuse guidelines. The Jordanian government seeks to embrace reclaimed resources in national water resources planning through recognized/regulated reuse implementation activities. A multi-sectoral project is being performed to help reach this goal in Jordan and worldwide, sharing lessons learned in increasing access to reused water, and involving performance of four demonstration projects with an aim toward developing replicable operational conditions that support sustainability/enhance expansion of treated wastewater reuse in Jordan.


2003 ◽  
Vol 3 (4) ◽  
pp. 59-68 ◽  
Author(s):  
A.N. Angelakis ◽  
L. Bontoux ◽  
V. Lazarova

Recycled water is a reliable source of water that must be taken into account in formulating a sustainable water policy. Water reuse is a growing field and many projects have been occurring throughout Europe in the last fifteen years. Most of northern EU countries have abundant water resources. In this case, the need for extra supply through the reuse of treated wastewater is not a priority, but the protection of the receiving environment is considered as an important issue. The situation is different in the southern EU countries, where the additional resource brought by water reuse promoted the implementation of a number of new projects. One of the major constraints for water reuse and its public acceptance is the lack of relevant legislation at EU level. As a result of this situation, both strict and flexible standards can be found in Europe, even in the same country (Spain, for example), illustrating an important equity issue, which needs to be addressed.


2021 ◽  
Vol 3 ◽  
Author(s):  
Ad De Roo ◽  
Ioannis Trichakis ◽  
Berny Bisselink ◽  
Emiliano Gelati ◽  
Alberto Pistocchi ◽  
...  

The Mediterranean is an area where the balance between water demand and abstractions vs. water availability is often under stress already, as demonstrated here with the Water Exploitation Index. In this work, model estimates on how different proposed measures for water resources management would affect different indicators. After a review of the current water resources status in the Mediterranean and the definition of indicators used in this study, aspects interlinked with water in the Water-Energy-Food-Ecosystems Nexus are briefly discussed, focusing on problems linked with water scarcity and depletion of groundwater resources as well as with climate change projections. Subsequently, the proposed measures for water efficiency are detailed—irrigation efficiency, urban water efficiency, water reuse and desalination—that might be effective to reduce the growing water scarcity problems in the Mediterranean. Their effects that result from the LISFLOOD model, show that wastewater reuse, desalination and water supply leakage reduction lead to decreased abstractions, but do not affect net water consumption. Increased irrigation efficiency does decrease consumption and reduces abstractions as well. We deduct however that the current envisaged water efficiency measures might not be sufficient to keep up with the pace of diminishing water availability due to climate change. More ambition is needed on water efficiency in the Mediterranean to keep water scarcity at bay.


Sign in / Sign up

Export Citation Format

Share Document