scholarly journals Hydrologic impact of climate change on Murray–Hotham catchment of Western Australia: a projection of rainfall–runoff for future water resources planning

2014 ◽  
Vol 18 (9) ◽  
pp. 3591-3614 ◽  
Author(s):  
S. A. Islam ◽  
M. A. Bari ◽  
A. H. M. F. Anwar

Abstract. Reduction of rainfall and runoff in recent years across southwest Western Australia (SWWA) has attracted attention to the climate change impact on water resources and water availability in this region. In this paper, the hydrologic impact of climate change on the Murray–Hotham catchment in SWWA has been investigated using a multi-model ensemble approach through projection of rainfall and runoff for the periods mid (2046–2065) and late (2081–2100) this century. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from the Australian Water Availability Project (AWAP). Downscaled and bias-corrected rainfall data from 11 general circulation models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of the climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to the observed past (1961–1980) and the resulting runoff reduction was found to be 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and the corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall areas compared to low rainfall areas. Temporal distribution of rainfall and runoff indicate that high rainfall events in the catchment reduced significantly and further reductions are projected, resulting in significant runoff reductions. A catchment scenario map has been developed by plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for the observed and projected periods. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, the considerable uncertainty involved in this study though ensemble mean was used to explain the findings.

2013 ◽  
Vol 10 (10) ◽  
pp. 12027-12076 ◽  
Author(s):  
S. A. Islam ◽  
M. A. Bari ◽  
A. H. M. F. Anwar

Abstract. Reduction of rainfall and runoff in recent years across South West Western Australia (SWWA) has drawn attention about climate change impact on water resources and its availability in this region. In this paper, hydrologic impact of climate change on Murray Hotham catchment in SWWA is investigated using multi-model ensemble approach. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from Australian Water Availability Project (AWAP). Downscaled and bias corrected rainfall data from 11 General Circulation Models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to observed past (1961–1980) and resulting runoff reduction was found 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall part compared to the low rainfall part. Temporal distribution of rainfall and runoff indicate that high rainfall in the catchment reduced significantly and further reductions are projected resulting significant runoff reductions. A catchment scenario map has been developed through plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for observed and projected period. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, considerable uncertainty involved in this study though ensemble mean was used to explain the findings.


2015 ◽  
Vol 19 (1) ◽  
pp. 567-581 ◽  
Author(s):  
N. Peleg ◽  
E. Shamir ◽  
K. P. Georgakakos ◽  
E. Morin

Abstract. A modeling framework is formulated and applied to assess the sensitivity of the hydrological regime of two catchments in a convective rainfall environment with respect to projected climate change. The study uses likely rainfall scenarios with high spatiotemporal resolution that are dependent on projected changes in the driving regional meteorological synoptic systems. The framework was applied to a case study in two medium-sized Mediterranean catchments in Israel, affected by convective rainfall, by combining the HiReS-WG rainfall generator and the SAC-SMA hydrological model. The projected climate change impact on the hydrological regime was examined for the RCP4.5 and RCP8.5 emission scenarios, comparing the historical (beginning of the 21st century) and future (mid-21st-century) periods from three general circulation model simulations available from CMIP5. Focusing on changes in the occurrence frequency of regional synoptic systems and their impact on rainfall and streamflow patterns, we find that the mean annual rainfall over the catchments is projected to be reduced by 15% (outer range 2–23%) and 18% (7–25%) for the RCP4.5 sand RCP8.5 emission scenarios, respectively. The mean annual streamflow volumes are projected to be reduced by 45% (10–60%) and 47% (16–66%). The average events' streamflow volumes for a given event rainfall depth are projected to be lower by a factor of 1.4–2.1. Moreover, the streamflow season in these ephemeral streams is projected to be shorter by 22% and 26–28% for the RCP4.5 and RCP8.5, respectively. The amplification in reduction of streamflow volumes relative to rainfall amounts is related to the projected reduction in soil moisture, as a result of fewer rainfall events and longer dry spells between rainfall events during the wet season. The dominant factors for the projected reduction in rainfall amount were the reduction in occurrence of wet synoptic systems and the shortening of the wet synoptic systems durations. Changes in the occurrence frequency of the two dominant types of the regional wet synoptic systems (active Red Sea trough and Mediterranean low) were found to have a minor impact on the total rainfall.


2021 ◽  
Author(s):  
Pragya Pradhan ◽  
Trang Thi Huyen Pham ◽  
Sangam Shrestha ◽  
Loc Ho ◽  
Edward Park

Abstract This study aims to project the compound impacts of climate change and human activities, including agriculture expansion and hydropower generation, on the future water availability in the Sre Pok River Basin. The five regional climate models (RCMs): ACESS, REMO2009, MPI, NorESM, CNRM were selected for the future climate projection under two scenarios i.e., RCP 4.5 and RCP 8.5. Our results reveal that the future annual rainfall is expected to decrease by 200 mm whereas the average temperature is expected to increase by 0.69°C to 4.16°C under future scenarios. The future water availability of Sre Pok River Basin was projected using soil and water assessment tool (SWAT). Next, the CROPWAT model was used to examine the irrigation water requirement and the HEC-ResSim model to simulate the hydropower generation of Buon Tuar Sarh reservoir. The future simulation indicates the decrease in future water availability, increasing demand for irrigation water and decreases in hydropower generation for the future periods. The irrigated areas are increases from 700 ha to 1500 ha as per the provincial development plan. This study also examines the present and future drought conditions of Sre Pok River via streamflow drought index (SDI). Our results expect to contribute toward supporting the planning and management of water resources for agriculture and to efficiently cope with drought conditions in the studied basin and beyond.


2014 ◽  
Vol 11 (9) ◽  
pp. 10553-10592 ◽  
Author(s):  
N. Peleg ◽  
E. Shamir ◽  
K. P. Georgakakos ◽  
E. Morin

Abstract. A modeling framework is formulated and applied to assess the sensitivity of the hydrological regime of two catchments in a convective rainfall environment with respect to projected climate change. The study uses likely rainfall scenarios with high spatiotemporal resolution that are dependent on projected changes in the driving regional meteorological synoptic systems. The framework was applied to a case study in two medium-sized Mediterranean catchments in Israel, affected by convective rainfall, by combining the HiReS-WG rainfall generator and the SAC-SMA hydrological model. The projected climate change impact on the hydrological regime was examined for the RCP4.5 and RCP8.5 emission scenarios, comparing the historical (beginning of the 21st century) and future (mid-21st-century) periods from three General Circulation Models simulations available from CMIP5. Focusing on changes in the occurrence frequency of regional synoptic systems and their impact on rainfall and streamflow patterns, we find that the mean annual rainfall over the catchments is projected to be reduced by 15% (range 2–23%) and 18% (7–25%) for the RCP4.5 sand RCP8.5 emission scenarios, respectively. The mean annual streamflow volumes are projected to be reduced by 45% (10–60%) and 47% (16–66%). The average events' streamflow volumes for a given event rainfall depth are projected to be lower by a factor of 1.4–2.1. Moreover, the streamflow season in these ephemeral streams is projected to be shorter by 22% and 26–28% for the RCP4.5 and RCP8.5, respectively. The amplification in reduction of streamflow volumes relatively to rainfall amounts is related to the projected reduction in soil moisture, as a result of fewer rainfall events and longer dry spells between rainfall events during the wet season. The dominant factors for the projected reduction in rainfall amount were the reduction in occurrence of wet synoptic systems and the shortening of the wet synoptic systems durations. Changes in the occurrence frequency of the two dominant types of the regional wet synoptic systems (Active Red Sea Trough and Mediterranean low) were found to have a minor impact on the total rainfall.


Author(s):  
Hudson Ellen Alencar Menezes ◽  
Raimundo Mainar de Medeiros ◽  
José Lucas Guilherme Santos

<p>As variações nas precipitações refletem claramente a dinâmica atmosférica da região, marcada pela intensa variabilidade, onde se observa a atuação da Zona de Convergência Intertropical (ZCIT) com sua atuação entre os meses de janeiro a março, sendo esse período mais chuvoso. As variabilidades espaço temporal no comportamento das chuvas tem sido analisadas e diagnosticadas por vários autores no Nordeste do Brasil (NEB), portanto objetivou-se diagnosticar a variabilidade dos índices pluviométricos em Teresina no Estado do Piauí no período de 1913 a 2010. A análise do comportamento da precipitação nas cidades de grande e médio porte é de extrema importância para o gerenciamento dos recursos hídricos, uma vez que se trata de áreas densamente urbanizadas. Muitas vezes, sem uma estruturação urbana adequada, estas cidades se encaixam perfeitamente nesse contexto. Foram utilizados dados mensais observados e anuais de precipitação pluviométrica no período de 1913 a 2010, com 97 anos de observações. Os resultados mostraram a recorrência de valores máximos de precipitação anual dentro de um intervalo de 18, 11 e 8 anos. Na análise dos desvios-padrões, os resultados mostraram predominância dos desvios negativos em relação aos desvios positivos.</p><p align="center"><strong><em>Climatology of rainfall in the Teresina city, Piauí state, Brazil</em></strong></p><p>Variations in precipitation clearly reflect the atmospheric dynamics of the region, marked by intense variability, where we observe the performance of the Intertropical Convergence Zone (ITCZ) with his performance in the months of January-March, this being more rain tem period. The timeline of rainfall variability in behavior has been analyzed and diagnosed by several authors in Northeast Brazil (NEB), so let's study this variability between the periods 1913 to 2010 of Teresina city.  The behavior of rainfall in cities large and medium sized is of utmost importance to the managerial of water resources, since it is densely urbanized areas. Often without adequate urban structures these cities fit perfectly in this context. We used observed monthly and annual rainfall data for the period 1913-2010, 97 years of observations. The results showed recurrence of maximum values of annual precipitation an interval of 18, 11 and 8 years. In the analysis of standard deviations, the results showed a predominance of negative deviations from the positive deviations.<strong></strong></p><p align="center"><strong><em><br /></em></strong></p>


2016 ◽  
Vol 113 (33) ◽  
pp. 9222-9227 ◽  
Author(s):  
Silvan Ragettli ◽  
Walter W. Immerzeel ◽  
Francesca Pellicciotti

Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1790 ◽  
Author(s):  
Muhammad Afzal ◽  
Ragab Ragab

Although the climate change projections are produced by global models, studying the impact of climatic change on water resources is commonly investigated at catchment scale where the measurements are taken, and water management decisions are made. For this study, the Frome catchment in the UK was investigated as an example of midland England. The DiCaSM model was applied using the UKCP09 future climate change scenarios. The climate projections indicate that the greatest decrease in groundwater recharge and streamflow was projected under high emission scenarios in the 2080s. Under the medium and high emission scenarios, model results revealed that the frequency and severity of drought events would be the highest. The drought indices, the Reconnaissance Drought Index, RDI, Soil Moisture Deficit, SMD and Wetness Index, WI, predicted an increase in the severity of future drought events under the high emission scenarios. Increasing broadleaf forest area would decrease streamflow and groundwater recharge. Urban expansion could increase surface runoff. Decreasing winter barley and grass and increasing oil seed rape, would increase SMD and slightly decrease river flow. Findings of this study are helpful in the planning and management of the water resources considering the impact of climate and land use changes on variability in the availability of surface and groundwater resources.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


2016 ◽  
Vol 25 (2) ◽  
pp. eR02 ◽  
Author(s):  
Teresa Soares David ◽  
Clara Assunção Pinto ◽  
Nadezhda Nadezhdina ◽  
Jorge Soares David

Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning.Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels.Material and Methods: For literature review we used Scopus, Web of Science and Google Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes.Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture.Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silvicultural practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed.Keywords: tree hydraulics; tree mortality; climate change; forest management; water resources.


Sign in / Sign up

Export Citation Format

Share Document