The influence of the gravitational circulation on estuarine sand dune migration: an idealized modelling approach

Author(s):  
Wessel M. van der Sande ◽  
Pieter C. Roos ◽  
Theo Gerkema ◽  
Suzanne J. M. H. Hulscher

<p>Estuarine sand dunes are – similar to river dunes and marine sand waves – large-scale rhythmic bed patterns. Their characteristics differ from their riverine and marine counterparts, owing to the complex and dynamic estuarine environment. Using an idealized process-based modelling approach, we investigate the effect of the gravitational circulation on estuarine sand dunes.</p><p>The gravitational circulation is a residual current typical to estuaries, as it results from a longitudinal salinity gradient. It constitutes a tide-averaged residual flow with an upstream-directed (landward) component at the bed and a downstream-directed (seaward) component at the water surface (Geyer & MacCready, 2014). Sediment transport primarily depends on the bed shear stress (and thus on the flow near the bed), and therefore this residual flow may well be responsible for upstream migration of these bedforms. Observations of sand dunes in the Gironde estuary, France, suggest that this may indeed be relevant to the migration direction of estuarine sand dunes (Berné et al., 1993).  </p><p>We incorporated the hydrodynamic features of the gravitational circulation in a morphodynamic model, which is similar to the one of Hulscher (1996). We then perform a so-called linear stability analysis, which shows that bedforms develop as free instabilities of the flat bed.</p><p>Results show that a longitudinal salinity gradient may cause upstream migration, provided that the river flow velocity is sufficiently small. During high discharge in the Gironde estuary, the salinity front is pushed outward (van Maanen & Sottolichio, 2018), thus increasing the salinity gradient at the position in the Gironde where the sand wave field is situated. Including this in the model shows that the strengthened gravitational circulation can overpower the increased river flow velocities during high discharge, and thus confirms the observation by Berné et al. (1993). We note that this mechanism is probably limited to estuaries which share similar characteristics as the Gironde estuary, i.e. symmetric tide, well-mixed, little wind and wave influence, and a small residual river flow velocity due to a significant increase in cross-sectional area. Future research will elaborate on the effects of (tidally varying) stratification through implementation of a time- and space dependent eddy viscosity.</p><p><strong>References</strong></p><p>Berné, S., Castaing, P., le Drezen, E., & Lericolais, G. (1993). Morphology, Internal Structure, and Reversal of Asymmetry of Large Subtidal Dunes in the Entrance to Gironde Estuary (France). Journal of Sedimentary Petrology, 63(5), 780–793. https://doi.org/10.1306/d4267c03-2b26-11d7-8648000102c1865d</p><p>Geyer, W. R., & MacCready, P. (2014). The Estuarine Circulation. Annual Review of Fluid Mechanics, 46, 175–197. https://doi.org/10.1146/annurev-fluid-010313-141302</p><p>Hulscher, S. J. M. H. (1996). Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. Journal of Geophysical Research, 101(C9), 727–744. https://doi.org/10.1029/96JC01662</p><p>van Maanen, B., & Sottolichio, A. (2018). Hydro- and sediment dynamics in the Gironde estuary (France): Sensitivity to seasonal variations in river inflow and sea level rise. Continental Shelf Research, 165(May), 37–50. https://doi.org/10.1016/j.csr.2018.06.001</p>

2020 ◽  
Author(s):  
Wessel M. van der Sande ◽  
Pieter C. Roos ◽  
Suzanne J.M.H. Hulscher

<p>Estuaries are hydrodynamically complex regions where a river meets saline water. In many estuaries, sand dunes can be found; these are large-scale rhythmic bedforms. Observational studies have revealed several estuarine processes that affect sand dune dimensions and dynamics. These are for instance sand-mud interactions and tidal amplification. Here, we build upon an observational study in the Gironde Estuary, France, which indicated that the gravitational circulation – present in many estuaries due to the interaction between (heavy) seawater and (light) freshwater – is significant enough to affect sand dunes (Berne et al., 1993). Our aim is to understand the effect of this circulation on bedform dimensions and dynamics, and to explain the underlying mechanisms.</p><p>To this end, we develop an idealized process-based model which contains descriptions for the motion of water and non-cohesive sediment transport within a local section of a generic estuary. On this geometry, we impose a steady river discharge, superimposed on an oscillatory tidal flow. Furthermore, we include the effect of salinity-induced density differences by following the model as presented by MacCready (2004). In here, we adopt a diagnostic approach, meaning that the along-estuarine salinity gradient is imposed on the domain instead of being an unknown which interacts with the flow. The alternative, a so-called prognostic approach, is also explored.</p><p>This model is analyzed using a so-called linear stability analysis, as applied earlier to e.g. marine sand waves (Hulscher, 1996) but not yet to estuarine dunes. Within this analysis, the reference state with a flat bed is slightly perturbed, and the model shows whether these perturbations decay (the flat bed is stable) or grow (it is unstable). The model results provide a generic insight into the role of the gravitational circulation on bedform dimensions and dynamics, particularly growth and migration; the latter possibly directed opposite to the river discharge. To test our model, it is then applied to the specific settings of the Gironde. Furthermore, a systematic sensitivity analysis shows the effect of environmental parameters on bedform development when subject to the gravitational circulation. Including this estuarine-specific process is a novel and first step in obtaining a solid understanding of the behavior of estuarine sand dunes.</p><p> </p><p><strong>References</strong></p><p>Berne, S., Castaing, P., le Drezen, E., & Lericolais, G. (1993). Morphology, Internal Structure, and Reversal of Asymmetry of Large Subtidal Dunes in the Entrance to Gironde Estuary (France). Journal of Sedimentary Petrology, 63(5), 780–793. https://doi.org/10.1306/d4267c03-2b26-11d7-8648000102c1865d</p><p>Hulscher, S. J. M. H. (1996). Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. Journal of Geophysical Research, 101(C9), 727–744. https://doi.org/10.1029/96JC01662</p><p>MacCready, P. (2004). Toward a unified theory of tidally-averaged estuarine salinity structure. Estuaries, 27(4), 561–570. https://doi.org/10.1007/BF02907644</p><p> </p>


2005 ◽  
Vol 56 (5) ◽  
pp. 619 ◽  
Author(s):  
F. Daverat ◽  
J. Tomas ◽  
M. Lahaye ◽  
M. Palmer ◽  
P. Elie

To enable a relevant interpretation of otolith strontium : calcium (Sr/Ca) variations in terms of habitat shifts of eels, the Sr/Ca-salinity relationship in eel otoliths was validated. Downstream and upstream migrations of young eels were reproduced in the laboratory by transferring groups of fish every 2 months between aquaria filled with water coming from the Dordogne river (salinity = 0), the upper Gironde estuary (salinity = 5), the lower Gironde estuary (salinity = 25) and the coast (salinity = 30), which represented the salinity gradient observed in the Gironde–Garonne–Dordogne watershed. Ontogenetic changes in otolith Sr/Ca were assessed in two groups of control fish that were kept in one of either two constant salinities (fresh water or seawater). X-ray electron microprobe (wavelength dispersive spectrometry, WDS) analyses of Sr/Ca ratios in the otoliths showed that the change of aquarium was recorded as a Sr/Ca increase (downstream migration) or a Sr/Ca decrease (upstream migration). No ontogenetic effect was detected in otoliths of control fish outside glass eel marks in either group of fish. The electron microprobe (WDS) analysis of the Sr/Ca life (transected in several otoliths of eels caught in the Gironde–Garonne–Dordogne watershed) showed that some of them were migrant eels that had experienced one major habitat shift during their continental life.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 392
Author(s):  
Zige Lan ◽  
Zhangwen Su ◽  
Meng Guo ◽  
Ernesto C. Alvarado ◽  
Futao Guo ◽  
...  

Understanding the drivers of wildfire occurrence is of great value for fire prevention and management, but due to the variation in research methods, data sources, and data resolution of those studies, it is challenging to conduct a large-scale comprehensive comparative qualitative analysis on the topic. China has diverse vegetation types and topography, and has undergone rapid economic and social development, but experiences a high frequency of wildfires, making it one of the ideal locations for wildfire research. We applied the Random Forests modelling approach to explore the main types of wildfire drivers (climate factors, landscape factors and human factors) in three high wildfire density regions (Northeast (NE), Southwest (SW), and Southeast (SE)) of China. The results indicate that climate factors were the main driver of wildfire occurrence in the three regions. Precipitation and temperature significantly impacted the fire occurrence in the three regions due to the direct influence on the moisture content of forest fuel. However, wind speed had important influence on fire occurrence in the SE and SW. The explanation power of the landscape and human factors varied significantly between regions. Human factors explained 40% of the fire occurrence in the SE but only explained less than 10% of the fire occurrence in the NE and SW. The density of roads was identified as the most important human factor driving fires in all three regions, but railway density had more explanation power on fire occurrence in the SE than in the other regions. The landscape factors showed nearly no influence on fire occurrence in the NE but explained 46.4% and 20.6% in the SE and SW regions, respectively. Amongst landscape factors, elevation had the highest average explanation power on fire occurrence in the three regions, particularly in the SW. In conclusion, this study provides useful insights into targeted fire prediction and prevention, which should be more precise and effective under climate change and socio-economic development.


2008 ◽  
Vol 87 (4) ◽  
pp. 359-361 ◽  
Author(s):  
T. van der Hammen ◽  
B. van Geel

AbstractDuring the warm Bølling-Allerød interstadial, tree species migrated from their refugia in southern Europe northwards into the area within the present temperate climatic zone. It is evident from high levels of charcoal in fossil records in this region that, especially during the later part of the Bølling-Allerød interstadial, many fires occurred. The start of the Younger Dryas was characterised by rapid and intense cooling and rising water tables, with catastrophic effects on the vegetation. Thermophilous pine trees could not survive the cold Younger Dryas climate. Dead wood provided an abundant source of fuel for intense, large-scale fires seen in many records as a concentration of charcoal particles in so-called ’Usselo-soils’ dated to ca 10,95014C BP. A similar trend in increased charcoal indicating increased burning is seen at many sites across North America at this time and it has been suggested by Firestone et al. (2007) that this was caused by an explosion of extra-terrestrial material over northern North America, causing the Younger Dryas climate cooling and Megafaunal extinction. We argue that there is no need to invoke an extraterrestrial cause to explain the charcoal in the fossilized soils. The volume of forest trees that died as a result of the cold Younger Dryas climate would easily have supplied sufficient fuel for intense, large-scale fires and can be used to account for the concentration of charcoal particles. As soils were no longer covered by dense vegetation, much erosion occurred during the Younger Dryas and therefore, at many places, Usselo soils, rich in charcoal, were preserved under aeolian sand dunes.


Author(s):  
Jussi T. Koivumäki ◽  
Jouni Takalo ◽  
Topi Korhonen ◽  
Pasi Tavi ◽  
Matti Weckström

When developing large-scale mathematical models of physiology, some reduction in complexity is necessarily required to maintain computational efficiency. A prime example of such an intricate cell is the cardiac myocyte. For the predictive power of the cardiomyocyte models, it is vital to accurately describe the calcium transport mechanisms, since they essentially link the electrical activation to contractility. The removal of calcium from the cytoplasm takes place mainly by the Na + /Ca 2+ exchanger, and the sarcoplasmic reticulum Ca 2+ ATPase (SERCA). In the present study, we review the properties of SERCA, its frequency-dependent and β -adrenergic regulation, and the approaches of mathematical modelling that have been used to investigate its function. Furthermore, we present novel theoretical considerations that might prove useful for the elucidation of the role of SERCA in cardiac function, achieving a reduction in model complexity, but at the same time retaining the central aspects of its function. Our results indicate that to faithfully predict the physiological properties of SERCA, we should take into account the calcium-buffering effect and reversible function of the pump. This ‘uncomplicated’ modelling approach could be useful to other similar transport mechanisms as well.


2015 ◽  
Vol 19 (6) ◽  
pp. 2805-2819 ◽  
Author(s):  
I. Jalón-Rojas ◽  
S. Schmidt ◽  
A. Sottolichio

Abstract. Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in southwest France, the Gironde fluvial-estuarine system has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low discharge, interannual changes). Turbidity shows hysteresis loops at different timescales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the upstream migration of TMZ in the fluvial stations. Whereas the duration of the low discharge period mainly determines the TMZ persistence, the freshwater volume during high discharge periods explains the TMZ concentration at the following dry period. The evolution of these two hydrological indicators of TMZ persistence and turbidity level since 1960 confirms the effect of discharge decrease on the intensification of the TMZ in tidal rivers; both provide a tool to evaluate future scenarios.


2012 ◽  
Vol 9 (6) ◽  
pp. 7317-7378 ◽  
Author(s):  
A. Kleidon ◽  
E. Zehe ◽  
U. Ehret ◽  
U. Scherer

Abstract. The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.


Author(s):  
Adam Łajczak

Abstract Changes in flood risk impacted by river training - case study of piedmont section of the Vistula river. Main problems concerning the flood risk in piedmont section of the Vistula, Southern Poland, are discussed. This stretch of the river is channelized since the middle of the 19th century. It is part of the mainstream discussion of the effectiveness of existing river channelization methods. The following problems are analysed: (1) current state of flood risk, (2) the rate of river flow, (3) changes in flood risk since the start of channelization efforts with respect to changing channel geometry and changing rates of river flow reflecting the effects of channelization work. Substantially increased bankfull discharge in a channelized river may be considered as a stable hydrologic feature of the river stretch analysed. This means that the river is effectively reducing the quantity of water available for flooding the inter-embankment zone. This statement is the basis for analysis of changes in flood risk in the river studied. An assessment of changes in flood risk for the piedmont section of the Vistula cannot be categorical. Some changes in discharge help reduce flood risk, while others increase it. The paper is based mainly on the State Hydrological Survey data over more than the last 100 years, a large-scale maps over the last 230 years, and fieldwork conducted by the author.


<em>Abstract.</em> —Freshwater tropical island environments support a variety of fishes that provide cultural, economic, and ecological services for humans but receive limited scientific, conservation, and public attention. Puerto Rico is a Caribbean tropical island that may serve as a model to illustrate the interactions between humans and natural resources in such complex ecosystems. The native freshwater fish assemblage of Puerto Rico is distinct from mainland assemblages in that the assemblage is not diverse, all species are diadromous, and they may be exploited at multiple life stages (e.g., postlarva, juvenile, adult). Primary large-scale drivers of recent water-use policy include economic growth, human population density, and urbanization, with climate change as an overarching influence. Watershed and riparian land use, water quality, river flow and instream physical habitat, river habitat connectivity, exotic species, and aquatic resource exploitation are important proximate factors affecting the ecosystem and fisheries. Research on ecological processes and components of the stream and river fish assemblages has expanded the knowledge base in the past decade with the goal of providing critical information for guiding the conservation and management of the lotic resource to optimize ecosystem function and services. The greatest challenge facing Caribbean island society is developing policies that balance the needs for human water use and associated activities with maintaining aquatic biodiversity, ecological integrity and services, and sustainable fisheries. Achieving this goal will require broad cooperation and sustained commitment among public officials, agency administrators, biologists, and the public toward effective resource management.


Sign in / Sign up

Export Citation Format

Share Document