scholarly journals Are Climate Factors Driving the Contemporary Wildfire Occurrence in China?

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 392
Author(s):  
Zige Lan ◽  
Zhangwen Su ◽  
Meng Guo ◽  
Ernesto C. Alvarado ◽  
Futao Guo ◽  
...  

Understanding the drivers of wildfire occurrence is of great value for fire prevention and management, but due to the variation in research methods, data sources, and data resolution of those studies, it is challenging to conduct a large-scale comprehensive comparative qualitative analysis on the topic. China has diverse vegetation types and topography, and has undergone rapid economic and social development, but experiences a high frequency of wildfires, making it one of the ideal locations for wildfire research. We applied the Random Forests modelling approach to explore the main types of wildfire drivers (climate factors, landscape factors and human factors) in three high wildfire density regions (Northeast (NE), Southwest (SW), and Southeast (SE)) of China. The results indicate that climate factors were the main driver of wildfire occurrence in the three regions. Precipitation and temperature significantly impacted the fire occurrence in the three regions due to the direct influence on the moisture content of forest fuel. However, wind speed had important influence on fire occurrence in the SE and SW. The explanation power of the landscape and human factors varied significantly between regions. Human factors explained 40% of the fire occurrence in the SE but only explained less than 10% of the fire occurrence in the NE and SW. The density of roads was identified as the most important human factor driving fires in all three regions, but railway density had more explanation power on fire occurrence in the SE than in the other regions. The landscape factors showed nearly no influence on fire occurrence in the NE but explained 46.4% and 20.6% in the SE and SW regions, respectively. Amongst landscape factors, elevation had the highest average explanation power on fire occurrence in the three regions, particularly in the SW. In conclusion, this study provides useful insights into targeted fire prediction and prevention, which should be more precise and effective under climate change and socio-economic development.

Author(s):  
Bethany Juhnke ◽  
Colleen Pokorny ◽  
Linsey Griffin ◽  
Susan Sokolowski

Despite the complexity of the human hand, most large-scale anthropometric data for the human hand includes minimal measurements. Anthropometric studies are expensive and time-consuming to conduct, and more efficient methods are needed to capture hand data and build large-scale civilian databases to impact product design and human factors analyses. A first of its kind large-scale 3D hand anthropometric database was the result of this study with 398 unique datasets. This database was created at minimal cost and time to researchers to improve accessibility to data and impact the design of products for hands.


2020 ◽  
Vol 3 (1) ◽  
pp. 106
Author(s):  
Yevhen Melnyk ◽  
Vladimir Voron

Preservation and increase of forest area are necessary conditions for the biosphere functioning. Forest ecosystems in most parts of the world are affected by fires. According to the latest data, the forest fire situation has become complicated in Ukraine, and this issue requires ongoing investigation. The aim of the study was to analyse the dynamics of wildfires in Ukrainian forests over recent decades and to assess the complex indicator of wildfire occurrence in various forest management zones and administrative regions. The average annual complex indicator of fire occurrence, in terms of wildfire number and burned area, was studied in detail in the forests of various administrative regions and forest management zones in Ukraine from 1998 to 2017. The results show that fire occurrence in both the number and area of fires can vary significantly in various forest management zones. There is a very noticeable difference in these indicators in some administrative regions within a particular forest management zone. The data show that the number of forest fires depends not only on the natural and climatic conditions of such regions, but also on anthropogenic factors.


Author(s):  
Jason J. Saleem ◽  
Kyle Maddox ◽  
Jennifer Herout ◽  
Kurt Ruark

This practice-oriented paper presents a human-centered design (HCD) framework that we developed to perform a comprehensive evaluation of a new health information technology (HIT) system under development, intended to replace a legacy system. The Department of Veterans Affairs (VA) Veteran Crisis Line (VCL) program provides a vital service in crisis intervention and suicide prevention. VCL staff rely on a Customer Relationship Management (CRM) legacy system, Medora. VCL intended to replace Medora with Microsoft Dynamics 365 (D365) CRM system. Due to wide-spread criticism of D365, the VA Human Factors Engineering (HFE) team engaged in a multi-study, mixed-method HCD evaluation to investigate the legacy system and intended replacement in terms of ability to support VCL staff needs. The HCD framework we developed to perform this evaluation may be adapted for other large-scale HIT transitions and may provide human factors practitioners with guidance to make evidence-based decisions to support (or abandon) such transitions.


Author(s):  
Jussi T. Koivumäki ◽  
Jouni Takalo ◽  
Topi Korhonen ◽  
Pasi Tavi ◽  
Matti Weckström

When developing large-scale mathematical models of physiology, some reduction in complexity is necessarily required to maintain computational efficiency. A prime example of such an intricate cell is the cardiac myocyte. For the predictive power of the cardiomyocyte models, it is vital to accurately describe the calcium transport mechanisms, since they essentially link the electrical activation to contractility. The removal of calcium from the cytoplasm takes place mainly by the Na + /Ca 2+ exchanger, and the sarcoplasmic reticulum Ca 2+ ATPase (SERCA). In the present study, we review the properties of SERCA, its frequency-dependent and β -adrenergic regulation, and the approaches of mathematical modelling that have been used to investigate its function. Furthermore, we present novel theoretical considerations that might prove useful for the elucidation of the role of SERCA in cardiac function, achieving a reduction in model complexity, but at the same time retaining the central aspects of its function. Our results indicate that to faithfully predict the physiological properties of SERCA, we should take into account the calcium-buffering effect and reversible function of the pump. This ‘uncomplicated’ modelling approach could be useful to other similar transport mechanisms as well.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yueran Li ◽  
Pooja Deshpande ◽  
Rebecca J. Hertzman ◽  
Amy M. Palubinsky ◽  
Andrew Gibson ◽  
...  

Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.


2016 ◽  
Vol 25 (5) ◽  
pp. 505 ◽  
Author(s):  
Futao Guo ◽  
Guangyu Wang ◽  
Zhangwen Su ◽  
Huiling Liang ◽  
Wenhui Wang ◽  
...  

We applied logistic regression and Random Forest to evaluate drivers of fire occurrence on a provincial scale. Potential driving factors were divided into two groups according to scale of influence: ‘climate factors’, which operate on a regional scale, and ‘local factors’, which includes infrastructure, vegetation, topographic and socioeconomic data. The groups of factors were analysed separately and then significant factors from both groups were analysed together. Both models identified significant driving factors, which were ranked in terms of relative importance. Results show that climate factors are the main drivers of fire occurrence in the forests of Fujian, China. Particularly, sunshine hours, relative humidity (fire seasonal and daily), precipitation (fire season) and temperature (fire seasonal and daily) were seen to play a crucial role in fire ignition. Of the local factors, elevation, distance to railway and per capita GDP were found to be most significant. Random Forest demonstrated a higher predictive ability than logistic regression across all groups of factors (climate, local, and climate and local combined). Maps of the likelihood of fire occurrence in Fujian illustrate that the high fire-risk zones are distributed across administrative divisions; consequently, fire management strategies should be devised based on fire-risk zones, rather than on separate administrative divisions.


2008 ◽  
Vol 8 (4) ◽  
pp. 819-838 ◽  
Author(s):  
A. Amengual ◽  
T. Diomede ◽  
C. Marsigli ◽  
A. Martín ◽  
A. Morgillo ◽  
...  

Abstract. In the framework of AMPHORE, an INTERREG III B EU project devoted to the hydrometeorological modeling study of heavy precipitation episodes resulting in flood events and the improvement of the operational hydrometeorological forecasts for the prediction and prevention of flood risks in the Western Mediterranean area, a hydrometeorological model intercomparison has been carried out, in order to estimate the uncertainties associated with the discharge predictions. The analysis is performed for an intense precipitation event selected as a case study within the project, which affected northern Italy and caused a flood event in the upper Reno river basin, a medium size catchment in the Emilia-Romagna Region. Two different hydrological models have been implemented over the basin: HEC-HMS and TOPKAPI which are driven in two ways. Firstly, stream-flow simulations obtained by using precipitation observations as input data are evaluated, in order to be aware of the performance of the two hydrological models. Secondly, the rainfall-runoff models have been forced with rainfall forecast fields provided by mesoscale atmospheric model simulations in order to evaluate the reliability of the discharge forecasts resulting by the one-way coupling. The quantitative precipitation forecasts (QPFs) are provided by the numerical mesoscale models COSMO and MM5. Furthermore, different configurations of COSMO and MM5 have been adopted, trying to improve the description of the phenomena determining the precipitation amounts. In particular, the impacts of using different initial and boundary conditions, different mesoscale models and of increasing the horizontal model resolutions are investigated. The accuracy of QPFs is assessed in a threefold procedure. First, these are checked against the observed spatial rainfall accumulations over northern Italy. Second, the spatial and temporal simulated distributions are also examined over the catchment of interest. And finally, the discharge simulations resulting from the one-way coupling with HEC-HMS and TOPKAPI are evaluated against the rain-gauge driven simulated flows, thus employing the hydrological models as a validation tool. The different scenarios of the simulated river flows – provided by an independent implementation of the two hydrological models each one forced with both COSMO and MM5 – enable a quantification of the uncertainties of the precipitation outputs, and therefore, of the discharge simulations. Results permit to highlight some hydrological and meteorological modeling factors which could help to enhance the hydrometeorological modeling of such hazardous events. Main conclusions are: (1) deficiencies in precipitation forecasts have a major impact on flood forecasts; (2) large-scale shift errors in precipitation patterns are not improved by only enhancing the mesoscale model resolution; and (3) weak differences in flood forecasting performance are found by using either a distributed continuous or a semi-distributed event-based hydrological model for this catchment.


2020 ◽  
Vol 12 (12) ◽  
pp. 5214 ◽  
Author(s):  
Hao Wang ◽  
Fei Yao ◽  
Huasheng Zhu ◽  
Yuanyuan Zhao

Vegetation coverage is a key variable in terrestrial ecosystem monitoring and climate change research and is closely related to soil erosion and land desertification. In this article, we aimed to resolve two key scientific issues: (1) quantifying the spatial-temporal vegetation dynamics in the Otindag Sandy Land (OSL); and (2) identifying the relative importance of climate factors and human activities in impacting vegetation dynamics. Based on correlation analysis, simple regression analysis, and the partial derivative formula method, we examined the spatiotemporal variation of vegetation coverage in the OSL, belonging to the arid and semiarid region of northern China, and their interaction with climate-human factors. The results showed that the vegetation coverage of the area showed a downward trend with a rate of −0.0006/a during 2001–2017, and gradually decreased from east to west. Precipitation was the main climate factor controlling the overall distribution pattern of vegetation coverage, while the human factors had a more severe impact on the vegetation coverage than the climate factors in such a short period, and the overall impact was negative. Among the human factors, population pressure, urbanization, industrialization, pastoral production activities, and residents’ lifestyles had a negative impact. However, ecological restoration polices alleviated the contradiction between human development and vegetation deterioration. The results of this article provide a scientific basis for restoring grassland systems in arid and semi-arid areas


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 887 ◽  
Author(s):  
Kaiwei Luo ◽  
Xingwen Quan ◽  
Binbin He ◽  
Marta Yebra

Previous studies have shown that Live Fuel Moisture Content (LFMC) is a crucial driver affecting wildfire occurrence worldwide, but the effect of LFMC in driving wildfire occurrence still remains unexplored over the southwest China ecosystem, an area historically vulnerable to wildfires. To this end, we took 10-years of LFMC dynamics retrieved from Moderate Resolution Imaging Spectrometer (MODIS) reflectance product using the physical Radiative Transfer Model (RTM) and the wildfire events extracted from the MODIS Burned Area (BA) product to explore the relations between LFMC and forest/grassland fire occurrence across the subtropical highland zone (Cwa) and humid subtropical zone (Cwb) over southwest China. The statistical results of pre-fire LFMC and cumulative burned area show that distinct pre-fire LFMC critical thresholds were identified for Cwa (151.3%, 123.1%, and 51.4% for forest, and 138.1%, 72.8%, and 13.1% for grassland) and Cwb (115.0% and 54.4% for forest, and 137.5%, 69.0%, and 10.6% for grassland) zones. Below these thresholds, the fire occurrence and the burned area increased significantly. Additionally, a significant decreasing trend on LFMC dynamics was found during the days prior to two large fire events, Qiubei forest fire and Lantern Mountain grassland fire that broke during the 2009/2010 and 2015/2016 fire seasons, respectively. The minimum LFMC values reached prior to the fires (49.8% and 17.3%) were close to the lowest critical LFMC thresholds we reported for forest (51.4%) and grassland (13.1%). Further LFMC trend analysis revealed that the regional median LFMC dynamics for the 2009/2010 and 2015/2016 fire seasons were also significantly lower than the 10-year LFMC of the region. Hence, this study demonstrated that the LFMC dynamics explained wildfire occurrence in these fire-prone regions over southwest China, allowing the possibility to develop a new operational wildfire danger forecasting model over this area by considering the satellite-derived LFMC product.


Sign in / Sign up

Export Citation Format

Share Document