Tropospheric products as a signal of interest – overview of troposphere sensing techniques

Author(s):  
Karina Wilgan ◽  
Witold Rohm ◽  
Jaroslaw Bosy ◽  
Alain Geiger ◽  
M. Adnan Siddique ◽  
...  

<p>The microwave signals passing through the troposphere are delayed by refraction. Its high variations, both in time and space, are caused mainly by water vapor. The tropospheric delay used to be considered only as a source of error that needed to be removed. Nowadays, these delays are also a source of interest. The tropospheric delays or integrated water vapor are being assimilated into nowcasting or numerical weather prediction (NWP) models. Moreover, long time series of tropospheric observations have become an important source of information for climate studies. On the other hand, the meteorological data support the space-geodetic community by providing models that can be used to reduce the troposphere impact on the signal propagation. Furthermore, the delays calculated by one microwave technique can be used to mitigate the errors in others.</p><p>There are several ways of observing the troposphere, especially considering water vapor. The classical meteorological are: in-situ measurements, radiosondes or radiometers, which allow to sense the amount of water vapor directly. Another, indirect way of observing the water vapor distribution is by using the Global Navigation Satellite Systems (GNSS). This method is called GNSS meteorology. Other microwave techniques such as Very Long Baseline Interferometry (VLBI) or Interferometric Synthetic Aperture Radar (InSAR) are also capable to retrieve the atmospheric information from their signals.</p><p>This contribution shows an overview of the troposphere sensing techniques and their applications. We present multi-comparisons of the tropospheric parameters, i.e. refractivity, tropospheric delays in zenith and slant directions and integrated water vapor. The integration of the different data sources often leads to an improved accuracy of the tropospheric products but requires a careful preparation of data. The combination of the data sources allows for using the techniques of complementary properties, for example InSAR with very high spatial resolution with GNSS observations of high temporal resolution. With the emergence of new technologies, some traditional ways of tropospheric measurements can be augmented with the new methods. For example, we have tested meteo-drones as an alternative to radiosondes. The comparisons with GNSS data shows a good agreement of the drone and microwave data, even better than with radiosonde. Moreover, we present the results of the GNSS data assimilation into NWP models and the developments towards multi-GNSS, real-time assimilation of advanced products such as slant delays and horizontal tropospheric gradients.</p>

2020 ◽  
Author(s):  
Karina Wilgan ◽  
Witold Rohm ◽  
Jaroslaw Bosy ◽  
Alain Geiger ◽  
M. Adnan Siddique ◽  
...  

<p>Microwave signals passing through the troposphere are delayed by refraction. Its high variations, both in time and space, are caused mainly by water vapor. The tropospheric delay used to be considered only as a source of error that needed to be removed. Nowadays, these delays are also a source of interest, for example, tropospheric delays or integrated water vapor information are being assimilated into nowcasting or numerical weather prediction (NWP) models. Moreover, long time series of tropospheric observations have become an important source of information for climate studies. On the other hand, the meteorological data is supporting the space-geodetic community by providing models that can be used to reduce the troposphere impact on the signal propagation.</p><p>There are several ways of observing the troposphere, especially considering water vapor.  First one are the classical meteorological: in-situ measurements, radiosondes or radiometers, from which we can sense directly the amount of water vapor. Another, indirect way of observing the water vapor distribution is by using the Global Navigation Satellite Systems (GNSS). This method is called GNSS meteorology. Other microwave techniques such as Very Long Baseline Interferometry (VLBI), Interferometric Synthetic Aperture Radar (InSAR) or space-based Radio Occultations (RO) can also be used in a similar way to GNSS.</p><p>This contribution presents an overview of the troposphere sensing techniques with examples of their applications. We present a multi-comparison of the tropospheric products, i.e. refractivity, tropospheric delays in zenith and slant directions and integrated water vapor. The integration of the different data sources often leads to an improved accuracy of the tropospheric products but requires a careful preparation of data. The combination of the data sources allows for using techniques of complementary properties, for example InSAR with very high spatial resolution with GNSS observations of high temporal resolution. With the emergence of new technologies, some traditional ways of tropospheric measurements can be augmented with the new methods. For example, we have tested meteo-drones as an alternative to radiosondes. The comparisons with GNSS data shows a good agreement of the drone and microwave data, even better than with radiosondes.</p>


Author(s):  
Pawel Golaszewski ◽  
Pawel Wielgosz ◽  
Katarzyna Stepniak

GNSS is an important source of meteorological data. GNSS measurements can provide tropospheric Zenith Wet Delays (ZWD) over wide area covered with permanent stations. In addition, when using surface synoptical data, GNSS can provide Integrated Water Vapor (IWV) which is very valuable information utilized in weather forecasts and severe weather monitoring. Hence, there is a need to test and validate various algorithms and software used for ZWD estimation. In this research, the accuracy of the ZWD estimates was tested using two different software packages: Bernese GNSS Software v.5.2 and G-Nut/Tefnut. In addition, their computational load was evaluated. The GNSS data were obtained from POTS permanent station, which is located in Potsdam, Germany. To validate the estimation results, the derived ZWD was transformed into the IWV, and afterwards compared to the reference IWV measured by the collocated Microwave Radiometer. In addition, the ZWD estimates were also compared to the EUREF final solution.


2020 ◽  
Author(s):  
Zhilu Wu ◽  
Yanxiong Liu ◽  
Yang Liu ◽  
Jungang Wang ◽  
Xiufeng He ◽  
...  

Abstract. The calibration microwave radiometer (CMR) onboard Haiyang-2A satellite provides wet tropospheric delays correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. Ground-based Global Navigation Satellite Systems (GNSS) provide precise PWV with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 IGS stations along the coastline and 56-day shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made to the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm in RMS within 100 km. Geographically, the RMS is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an RMS of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well with no obvious system error.


2020 ◽  
Vol 12 (4) ◽  
pp. 721
Author(s):  
Chaoqian Xu ◽  
Yibin Yao ◽  
Junbo Shi ◽  
Qi Zhang ◽  
Wenjie Peng

The accuracy of global tropospheric empirical models depends on the model expression and the modeling data sources. Although the current temporal resolution of available models is usually one day, it is anticipated that this will be improved in the future. To achieve compatibility with future high temporal-resolution data sources, this study develops a new global tropospheric correction model, the Wuhan-University Global Tropospheric Empirical Model (WGTEM). Evaluation of WGTEM model expression determines that it has better precision than other models, and this is attributed to its ability to consider diurnal variations in meteorological parameters and the double-peak daily variation in air pressure, which are not concerned in other models. The external accuracy of the WGTEM was evaluated after modeling with the European Centre for Medium-range Weather Forecasts (ECMWF) ERA-Interim products, and results show its accuracy exceeds that of the current ITG model and its Zenith Tropospheric Delay (ZTD) performance is also superior.


2021 ◽  
Vol 13 (12) ◽  
pp. 2287
Author(s):  
Javier Vaquero-Martínez ◽  
Manuel Antón

After 30 years since the beginning of the Global Positioning System (GPS), or, more generally, Global Navigation Satellite System (GNSS) meteorology, this technique has proven to be a reliable method for retrieving atmospheric water vapor; it is low-cost, weather independent, with high temporal resolution and is highly accurate and precise. GNSS ground-based networks are becoming denser, and the first stations installed have now quite long time-series that allow the study of the temporal features of water vapor and its relevant role inside the climate system. In this review, the different GNSS methodologies to retrieve atmospheric water vapor content re-examined, such as tomography, conversion of GNSS tropospheric delay to water vapor estimates, analyses of errors, and combinations of GNSS with other sources to enhance water vapor information. Moreover, the use of these data in different kinds of studies is discussed. For instance, the GNSS technique is commonly used as a reference tool for validating other water vapor products (e.g., radiosounding, radiometers onboard satellite platforms or ground-based instruments). Additionally, GNSS retrievals are largely used in order to determine the high spatio-temporal variability and long-term trends of atmospheric water vapor or in models with the goal of determining its notable influence on the climate system (e.g., assimilation in numerical prediction, as input to radiative transfer models, study of circulation patterns, etc.).


2020 ◽  
Vol 13 (9) ◽  
pp. 4963-4972
Author(s):  
Zhilu Wu ◽  
Yanxiong Liu ◽  
Yang Liu ◽  
Jungang Wang ◽  
Xiufeng He ◽  
...  

Abstract. The calibration microwave radiometer (CMR) on board the Haiyang-2A (HY-2A) satellite provides wet tropospheric delay correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. The ground-based global navigation satellite system (GNSS) provides precise precipitable water vapor (PWV) with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 International GNSS Service (IGS) stations along the global coastline and 56 d shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made in the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm as the root mean square (rms) within 100 km. Geographically, the rms is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an rms of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well.


2014 ◽  
Vol 32 (8) ◽  
pp. 911-923 ◽  
Author(s):  
P. Jiang ◽  
S. R. Ye ◽  
Y. Y. Liu ◽  
J. J. Zhang ◽  
P. F. Xia

Abstract. Water vapor tomography is a promising technique for reconstructing the 4-D moisture field, which is important to the weather forecasting and nowcasting as well as to the numerical weather prediction. A near real-time 4-D water vapor tomographic system is developed in this study. GPS slant water vapor (SWV) observations are derived by a sliding time window strategy using double-difference model and predicted orbits. Besides GPS SWV, surface water vapor measurements are also assimilated as real time observations into the tomographic system in order to improve the distribution of observations in the lowest layers of tomographic grid. A 1-year term experiment in Hong Kong was carried out. The feasibility of the GPS data processing strategy is demonstrated by the good agreement between the time series of GPS-derived Precipitable Water Vapor (PWV) and radio-sounding-derived PWV with a bias of 0.04 mm and a root-mean-square error (RMSE) of 1.75 mm. Using surface humidity observations in the tomographic system, the bias and RMSE between tomography and radiosonde data are decreased by half in the ground level, but such improved effects weaken gradually with the rise of altitude until becoming adverse above 4000 m. The overall bias is decreased from 0.17 to 0.13 g m−3 and RMSE is reduced from 1.43 to 1.28 g m−3. By taking the correlation coefficient and RMSE between tomography and radiosonde individual profile as the statistical measures, quality of individual profile is also improved as the success rate of tomographic solution is increased from 44.44 to 63.82% while the failure rate is reduced from 55.56 to 36.18%.


2021 ◽  
Vol 13 (4) ◽  
pp. 551
Author(s):  
Zen Mariani ◽  
Shannon Hicks-Jalali ◽  
Kevin Strawbridge ◽  
Jack Gwozdecky ◽  
Robert W. Crawford ◽  
...  

The continuous measuring of the vertical profile of water vapor in the boundary layer using a commercially available differential absorption lidar (DIAL) has only recently been made possible. Since September 2018, a new pre-production version of the Vaisala DIAL system has operated at the Iqaluit supersite (63.74°N, 68.51°W), commissioned by Environment and Climate Change Canada (ECCC) as part of the Canadian Arctic Weather Science project. This study presents its evaluation during the extremely dry conditions experienced in the Arctic by comparing it with coincident radiosonde and Raman lidar observations. Comparisons over a one year period were strongly correlated (r > 0.8 at almost all heights) and exhibited an average bias of +0.13 ± 0.01 g/kg (DIAL-sonde) and +0.18 ± 0.02 g/kg (DIAL-Raman). Larger differences exhibiting distinct artifacts were found between 250 and 400 m above ground level (AGL). The DIAL’s observations were also used to conduct a verification case study of operational numerical weather prediction (NWP) models during the World Meteorological Organization’s Year of Polar Prediction. Comparisons to ECCC’s global environmental multiscale model (GEM-2.5 km and GEM-10 km) indicate good agreement with an average bias < 0.16 g/kg for the higher-resolution (GEM-2.5 km) models. All models performed significantly better during the winter than the summer, likely due to the winter’s lower water vapor concentrations and decreased variability. This study provides evidence in favor of using high temporal resolution lidar water vapor profile measurements to complement radiosonde observations and for NWP model verification and process studies.


2018 ◽  
Author(s):  
Biyan Chen ◽  
Wujiao Dai ◽  
Zhizhao Liu ◽  
Lixin Wu ◽  
Cuilin Kuang ◽  
...  

Abstract. Surface pressure (Ps) and weighted mean temperature (Tm) are two necessary variables for the accurate retrieval of precipitable water vapor (PWV) from global navigation satellite system (GNSS) data. The lack of Ps or Tm information is a concern for those GNSS sites that are not collocated with meteorological sensors. This paper investigates an alternative method of inferring accurate Ps and Tm at the GNSS station using nearby synoptic observations. Ps and Tm obtained at the nearby synoptic sites are interpolated onto the location of GNSS station by performing both vertical and horizontal adjustments, in which the parameters involved in Ps and Tm calculation are estimated from ERA-Interim reanalysis profiles. In addition, we present a method of constructing high quality PWV map through vertical reduction and horizontal interpolation of the retrieved GNSS PWVs. To evaluate the performances of the Ps and Tm retrieval and the PWV map construction, GNSS data collected from 58 stations of the Hunan GNSS network and synoptic observations from 20 nearby sites in 2015 were processed to extract the PWV so as to subsequently generate PWV map. The retrieved Ps and Tm and constructed PWV maps were assessed by the results derived from radiosonde and ERA-Interim reanalysis. The results show that (1) accuracies of Ps and Tm derived by synoptic interpolation are within the range of 1.7–3.0 hPa and 2.5–3.0 K, respectively, which are much better than the GPT2w model; (2) the constructed PWV maps have good agreements with radiosonde and ERA reanalysis data with overall accuracy better than 3 mm; and (3) PWV maps can well reveal the moisture advection, transportation and convergence during heavy rainfall.


2021 ◽  
Author(s):  
Pierre Sakic ◽  
Benjamin Männel ◽  
Maximilan Semmeling ◽  
Jens Wickert

&lt;p&gt;&lt;span&gt;The&lt;em&gt; Multidisciplinary Drifting Observatory for the Study of Arctic Climate &lt;/em&gt;(MOSAiC) campaign was conducted from September 2019 to October 2020. It aimed to observe the Arctic region's environmental parameters, considered to be the epicenter of the effects of climate change. On this occasion, a multi-GNSS antenna was deployed on the&lt;em&gt; R/V Polarstern&lt;/em&gt;. This installation aims mainly at estimating tropospheric delays, a proxy for the determination of atmospheric water vapor content. The number of observations of this type in the marine - and moreover polar - domain remains extremely limited so far. This experiment is also a good opportunity to carry out a comparative study of the tropospheric delay solutions that can be provided by different geodetic processing software. The underlying idea is to evaluate the repeatability of the different products and the overall state-of-the-art accuracy. We propose here to process the GNSS data acquired during the polar campaign with several packages (namely Bernese GNSS Software, GINS, TRACK, and CSRS-PPP) and compare the results and their agreement level. The data are also validated from observations made on land by GNSS stations at Bremerhaven (Germany), Troms&amp;#248; (Norway) &amp; Ny &amp;#197;lesund (Svalbard), the VLBI station of Ny &amp;#197;lesund, and the ECMWF ERA5 numerical model.&lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document