Cosmovision and geothermal: proposal for direct uses of the geothermal resource

Author(s):  
Karla Elizalde ◽  
Mariana Patricia Jácome Paz ◽  
Alma Adriana Zárate Arroyo

<p><strong>Cosmovision and geothermal: proposal for direct uses of the geothermal resource in El Carrizal, Veracruz, México</strong></p><p>Keywords:  Geothermy, direct uses, resource, social analisis.</p><p>Currently there is a wide epistemological repertoire that tells us about the man-natural environment relationship, the close relationship that exists between these two entelechies has been the subject of controversy within scientific disciplines, and it is not possible to speak of man without a time and space, just as you cannot talk about space and its components without mentioning at some point the presence of man.</p><p>This close relationship between man and nature has evolved over time, going from a static concept to a dynamic one in response to the need to offer an explanation of how the natural environment with anthropic presence has been modified and used.</p><p>Geothermal energy plays a very important role, from the energy field to the tourist, forming part of our civilization and history, with which it has a wide historical and cultural background. That is why, at present, geothermal energy appears as an important solution for obtaining renewable, sustainable, accessible and low-cost ecological energy throughout its temperature range.</p><p> </p><p>The main limiting cause for planning and carrying out an integral project of direct uses of the thermal resource is the lack of research work on thermal manifestations, where the geological and geochemical characteristics are described and which are integrated into a social analysis that tells us about perception of geothermal resources and the cultural and identity value that the adjacent population grants.</p><p>This panorama is repeated throughout the Mexican territory, and in particular, in the vicinity of the state of Veracruz and its various thermal springs, an example of this are: Los Baños Carrizal (Apazapan, Ver., 19 ° 19´ 15.69” N - 96 37´43.94” W), Hotel Chichaki (Apazapan, Ver., 19 ° 19´31.54” N - 96 ° 43´24.11” W), Isabelass Spa (Loc.Tinajitas, Actopan, Ver., 19 ° 37´ 38.07” N - 96 ° 27´31.87” W), among others.</p><p>In this work will present  the preliminary results of the project that leads to the realization of a geochemical characterization and the elaboration of a social study that manages to understand the role that the different thermal manifestations play around the history and culture of the population and with this to reach the proposal of a project of direct uses of the geothermal resource.</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Randy Koon Koon ◽  
Kalim Shah ◽  
Masaō Ashtine ◽  
Santana Lewis

The energy security of each Caribbean Community (CARICOM) member state is a key issue specifically addressed based on the energy demands of each nation. St. Vincent and the Grenadines (SVG) has the potential to strengthen its energy sector through the exploitation of immense untapped natural geothermal resources. Currently, SVG is planning to integrate base load power through a 10 Megawatt-electric (MWe) geothermal power plant (GPP1). The paper aims to highlight a detailed resource assessment profile of the renewables across SVG and the projected benefits of the proposed 10 MWe geothermal power potential, such as the positive economic development (displacing 149,000 bbls of crude oil), and the transition to a more climate-sensitive nation (displacing an estimated 0.172 million tCO2e/year). In addition, a volumetric method (Monte Carlo simulations) has been applied to reveal that the geothermal reservoir can sustain a minimum of 31 MWe, 34 MWe and 92 MWe over the lifespan of 25–30 years, for well 1 (SVG01), well 2 (SVG02) and well 3 (SVG03) respectively. Given the findings of the assessment and simulations, several policy approaches are identified as potential means of enhancing geothermal resource development and leveraging the resource for the islands’ sustainable energy demands. These include incentivization for public-private partnerships, information certainty, regulatory processes, and strengthened institutions.


2020 ◽  
Author(s):  
Robert Skrzypczak ◽  
Beata Kępińska ◽  
Leszek Pająk ◽  
Wiesław Bujakowski

Abstract The agriculture and related sectors present one of the most prospective areas for geothermal energy applications. In many countries they have already been introduced, and new investments in this sector have been also observed. Also Poland has the appropriate resources’ potential – in a wide range of temperatures, for different crops, as well as in the types of applications related to agriculture. The use of this green energy can contribute to sustainable development of agriculture.To achieve this when planning and designing geothermal installations for agriculture, they should be considered from the energy and agricultural points of view, as well as appropriate locations for them shall be selected so that they would be harmoniously incorporated, among others, into existing systems of valuable natural areas (which already play various important functions in the natural environment) and would not interfere with other underground resources of strategic economic importance.The main aspects of such an approach to the sustainable development of the geothermal energy applications in agriculture and related sectors in Poland, as well as natural circumstances, are presented in this article. Also included are basic energy parameters (based on the results of calculations) and technical and economic parameters for greenhouse facilities in one of the selected prospective locations in the Polish Lowlands, which could be supplied by local geothermal resources, contributing to sustainable development of agriculture.


2021 ◽  
Vol 11 (6) ◽  
pp. 2691
Author(s):  
Nataša Ćuković Ignjatović ◽  
Ana Vranješ ◽  
Dušan Ignjatović ◽  
Dejan Milenić ◽  
Olivera Krunić

The study presented in this paper assessed the multidisciplinary approach of geothermal potential in the area of the most southeastern part of the Pannonian basin, focused on resources utilization. This study aims to present a method for the cascade use of geothermal energy as a source of thermal energy for space heating and cooling and as a resource for balneological purposes. Two particular sites were selected—one in a natural environment; the other within a small settlement. Geothermal resources come from different types of reservoirs having different temperatures and chemical compositions. At the first site, a geothermal spring with a temperature of 20.5 °C is considered for heat pump utilization, while at the second site, a geothermal well with a temperature of 54 °C is suitable for direct use. The calculated thermal power, which can be obtained from geothermal energy is in the range of 300 to 950 kW. The development concept was proposed with an architectural design to enable sustainable energy efficient development of wellness and spa/medical facilities that can be supported by local authorities. The resulting energy heating needs for different scenarios were 16–105 kW, which can be met in full by the use of geothermal energy.


2017 ◽  
Vol 114 ◽  
pp. 7107-7117 ◽  
Author(s):  
Nagasree Garapati ◽  
Benjamin M. Adams ◽  
Jeffrey M. Bielicki ◽  
Philipp Schaedle ◽  
Jimmy B. Randolph ◽  
...  

2014 ◽  
Vol 492 ◽  
pp. 583-585 ◽  
Author(s):  
An Dong Wang ◽  
Zhan Xue Sun ◽  
Bao Qun Hu ◽  
Jin Hui Liu ◽  
Cheng Dong Liu

In the past decades, the study on Hot Dry Rock (HDR) geothermal resource has been a hot topic. A large number of investigations confirm that electricity power generated from HDR is feasible and suggest that HDR geothermal source is a kind of local and renewable energy. Up no now, many countries have carried out HDR experiments. As a large energy consumption country, China will also develop HDR geothermal energy in the near future. In the present study, our preliminary data potentially suggest that Guangdong province have great potential to develop HDR geothermal applications.


2021 ◽  
Author(s):  
Yang Yang ◽  
Bin Xiong ◽  
Sanxi Peng ◽  
Ibrar Iqbal ◽  
Tianyu Zhang

Abstract Geothermal energy is an important renewable clean energy resource with high development and usage potential. Geothermal resources, on the other hand, are buried deep below, and mining hazards are significant. Geophysical investigation is frequently required to determine the depth and location of geothermal resources. The Transient Electromagnetic Method (TEM) and the Controlled Source Audio Frequency Magnetotellurics (CSAMT) have the highest detection efficiency and accuracy of all electromagnetic exploration methods. This article initially explains the algorithm theory of the finite difference technique before establishing a simplified geothermal system resistivity model. Established on the simplified resistivity model, a simulation analysis of the ability of CSAMT and TEM to distinguish target body faults at different resistivities and dip angles was performed, and the effectiveness and difference of the two methods in detecting typical geothermal resource targets was verified. A complete exploratory research of CSAMT and TEM was conducted in Huairen County, Shuozhou City, Shanxi Province, China, based on theoretical analysis. Both approaches can reflect the geoelectric structure of the survey region, demonstrating the efficacy of the two methods in detecting genuine geothermal resources.


2020 ◽  
Author(s):  
Fábio Rodrigues de la Rocha

Public street lighting management is a well known problemwhich can be revisited from the perspective of Smart Cities.In Smart Cities there is an interconnection of services andinfrastructure to provide sustainable growth and improvementsin citizens’ quality of life. In this research work, weexplore new low cost technologies to create a smart streetlight system capable of monitoring and controlling the lamps,thus reducing the costs with maintenance and allowing amore rational use of electricity.


Author(s):  
Alain Ulazia ◽  
Aitor Urresti ◽  
Alvaro Campos ◽  
Gabriel Ibarra-Berastegi ◽  
Mirari Antxustegi ◽  
...  

The students of the Faculties of Engineering of the Universitty of Basque Country (Gipuzkoa-Eibar and Bilbao) in the last years of their studies, before becoming engineers, have the opportunity to select a block of subjects intended to enhance their knowledge on renewable energy systems. One of these subjects is Solar Thermal and Geothermal energy. These subjects are devoted to assessing the renewable energy resource, and designing optimal systems. Apart from the transmission of good practices, the focus is practical and is based on hands-on computer real-life exercises, which involves not only intensive programming using high-level software, but also the spatial representation of results. To that purpose two main open source codes are used: Octave (https://www.gnu.org/software/octave/), and QGIS (https://www.qgis.org/). Students learn how to address real-life problems regarding the geographical representation of solar radiation and low temperature geothermal resources using QGIS, and solar thermal system modelling using Octave.


Sign in / Sign up

Export Citation Format

Share Document