scholarly journals     Cocktails of pesticide residues in conventional and organic farming systems in Europe – legacy of the past and turning point for the future

Author(s):  
Vera Silva ◽  
Violette Geissen ◽  
Esperanza Huerta Lwanga ◽  
Nicolas Beriot ◽  
Klaas Oostindie ◽  
...  

<p>Considering that pesticides have been used in Europe for over 70 years, a system for monitoring pesticide residues in EU soils and their effects on soil health is long overdue. In an attempt to address this problem, we tested 340 EU agricultural topsoil samples for multiple pesticide residues. These samples originated from 4 representative EU case study sites (CSS), which covered 3 countries and four of the main EU crops: vegetable and orange production in Spain (S-V and S-O, respectively), grape production in Portugal (P-G), and potato production in the Netherlands (N-P). Soil samples were collected between 2015 and 2018 after harvest or before the start of the growing season, depending on the CSS. Conventional and organic farming results were compared in S-V, S-O and N-P. Soils from conventional farms presented mostly mixtures of pesticide residues, with a maximum of 16 residues/sample. Soils from organic farms had significantly fewer residues, with a maximum of 5 residues/sample. The residues with the highest frequency of detection and the highest content in soil were herbicides: glyphosate and its main metabolite AMPA (P-G, N-P, S-O), and pendimethalin (S-V). Total residue content in soil reached values of 0.8 mg kg-1 for S-V, 2 mg kg-1 for S-O and N-P, and 12 mg kg-1 for P-G. Organic soils presented 70-90% lower residue concentrations than the corresponding conventional soils. There is a severe knowledge gap concerning the effects of the accumulated and complex mixtures of pesticide residues found in soil on soil biota and soil health. Safety benchmarks should be defined and introduced into (soil) legislation as soon as possible. Soil remediation techniques should be developed to keep the levels of pesticide residues below such benchmarks. Furthermore, the process of transitioning to organic farming should take into consideration the residue mixtures and their residence time in soil.  </p>

2021 ◽  
pp. 116827
Author(s):  
Violette Geissen ◽  
Vera Silva ◽  
Esperanza Huerta Lwanga ◽  
Nicolas Beriot ◽  
Klaas Oostindie ◽  
...  

2021 ◽  
Vol 4 ◽  
Author(s):  
Nicholas Mawira Gitonga ◽  
Ezekiel Mugendi Njeru ◽  
Richard Cheruiyot ◽  
John M. Maingi

Organic farming systems are gaining popularity as agronomically and environmentally sound soil management strategies with potential to enhance soil microbial diversity and fertility, environmental quality and sustainable crop production. This work aimed at understanding the effect of organic and conventional farming on the diversity of soybean nodulating bradyrhizobia species. Field trapping of indigenous soybean Bradyrhizobium was done by planting promiscuous soybeans varieties SB16 and SC squire as well as non-promiscuous Gazelle in three organic and three conventional farms in Tharaka-Nithi County of Kenya. After 45 days of growth, 108 nodule isolates were obtained from the soybean nodules and placed into 13 groups based on their morphological characteristics. Genetic diversity was done by polymerase chain reaction (PCR) targeting 16S rDNA gene using universal primers P5-R and P3-F and sequencing was carried out using the same primer. High morphological and genetic diversity of the nodule isolates was observed in organic farms as opposed to conventional farms. There was little or no genetic differentiation between the nodule isolates from the different farms with the highest molecular variation (91.12%) being partitioned within populations as opposed to among populations (8.88%). All the isolates were identified as bradyrhizobia with close evolutionary ties with Bradyrhizobium japonicum and Bradyrhizobium yuanminense. Organic farming systems favor the proliferation of bradyrhizobia species and therefore a suitable environmentally friendly alternative for enhancing soybean production.


2011 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Keiko Ichiyama ◽  
Eri Sugiura ◽  
...  

2006 ◽  
Vol 18 ◽  
pp. 301-308 ◽  
Author(s):  
E.A. Stockdale ◽  
M.A. Shepherd ◽  
S. Fortune ◽  
S.P. Cuttle

Author(s):  
Michaela Kolářová ◽  
Luděk Tyšer ◽  
Josef Soukup

The aim of this study was to explore the composition of weed vegetation on arable land in selected areas of the Czech Republic and to determine the level of γ-diversity. Our survey was conducted at 27 conventional and 35 organic farms from 2006–2008. In each sampled field, one phytocoenological relevé of a standard size of 100 m2 was recorded in the central part of the field. The species cover was estimated. The total γ-diversity was expressed as the total number of weed species recorded. γ-diversity of different farming systems, altitudes and crops was calculated. Subsequently, the species were divided on the basis of their perenniality. In total, 172 weed species were found – 123 and 162 in conventional and organic farming, respectively. The highest number of species was found in winter cereals and at medium altitudes. Chenopodium album was recorded as the species with the highest constancy in both types of farming. In total, 89 annuals, 17 biennials and 15 perennials were observed in conventional farming, and 109 annuals, 23 biennials, 28 perennials and 2 semiparasitic annuals were found in organic farming.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
Małgorzata Szostek ◽  
Ewa Szpunar-Krok ◽  
Renata Pawlak ◽  
Jadwiga Stanek-Tarkowska ◽  
Anna Ilek

The aim of the study was to compare the effect of conventional, simplified, and organic farming systems on changes in the content of soil organic carbon, organic matter fractions, total nitrogen, and the enzymatic activity. The research was conducted from 2016–2018 on arable land in the south-eastern part of Poland. The selected soils were cultivated in conventional tillage (C_Ts), simplified tillage (S_Ts), and organic farming (O_Fs) systems. The analyses were performed in soil from the soil surface layers (up to 25 cm depth) of the experimental plots. The highest mean contents of soil organic carbon, total nitrogen, and organic matter fractions were determined in soils subjected to the simplified tillage system throughout the experimental period. During the study period, organic carbon concentration on surface soil layers under simplified tillage systems was 31 and 127% higher than the soil under conventional tillage systems and organic farming systems, respectively. Also, the total nitrogen concentration in those soils was more than 40% and 120% higher than conventional tillage systems and organic farming systems, respectively. Moreover, these soils were characterised by a progressive decline in SOC and Nt resources over the study years. There was no significant effect of the analysed tillage systems on the C:N ratio. The tillage systems induced significant differences in the activity of the analysed soil enzymes, i.e., dehydrogenase (DH) and catalase (CAT). The highest DH activity throughout the experiment was recorded in the O_Fs soils, and the mean value of this parameter was in the range of 6.01–6.11 μmol TPF·kg−1·h−1. There were no significant differences in the CAT values between the variants of the experiment. The results confirm that, regardless of other treatments, such as the use of organic fertilisers, tillage has a negative impact on the content of SOC and organic matter fractions in the O_Fs system. All simplifications in tillage reducing the interference with the soil surface layer and the use of organic fertilisers contribute to improvement of soil properties and enhancement of biological activity, which helps to maintain its productivity and fertility.


Sign in / Sign up

Export Citation Format

Share Document