Uncertainties in the variation of compound dry and hot events due to differences in drought indices

Author(s):  
Sifang Feng ◽  
Zengchao Hao

<p>Compound dry and hot events (CDHEs) are commonly defined as the concurrent or consecutive occurrences of the two events, which could lead to larger negative impacts than do individual extremes. The variation of CDHEs has gained increased attention in the past decades. Previous studies have detected changes in the frequency, duration, and spatial extent at regional and global scales based on observations and model simulations. However, these studies mainly focus on a single drought indicator. In the past decades, different drought indicators have been applied to characterize drought conditions, such as Standardized Precipitation Index (SPI), and Standardized Precipitation-Evapotranspiration Index (SPEI), and Palmer Drought Severity Index (PDSI). Due to the difference in these drought indicators in characterizing droughts, evaluation of CDHEs based on different drought indices may lead to a different magnitude of changes (or even opposite direction of changes). However, quantitative analysis of the uncertainties in the variation of CDHEs is still lacking. In this study, we quantitatively evaluate the uncertainties of CDHEs variations ove global areas due to differences in drought indices. Results from this study could further our understanding of changes in CDHEs under global warming.</p>

2019 ◽  
Vol 10 (02) ◽  
pp. 1950006
Author(s):  
JEE W. HWANG ◽  
OKMYUNG BIN

This study estimates the effects of changes in climatic conditions on local pecan production, price, and cash receipts in New Mexico, USA, for the period from 1964 to 2014. Our primary measures for estimating the effects are drought indices: the Palmer Drought Severity Index, and the Standardized Precipitation Index. Our results indicate that precipitation is important to pecan yields. Consistent with previous studies, we find the effects of moisture deficits to be more pronounced compared to conditions of high moisture levels. The gains from moderate to extreme wet conditions on cash receipts are estimated to be as high as [Formula: see text]% while the losses from moderate to severe droughts are as high as [Formula: see text]%. Applying these estimates to cash receipts during the years when an actual wet spell and a drought that took place in New Mexico, the values of these effects are [Formula: see text]$12.6 million and [Formula: see text]$59.7 million, respectively.


2021 ◽  
Author(s):  
Viorica Nagavciuc ◽  
Monica Ionita ◽  
Cătălin-Constantin Roibu

<p>Drought is one of the most complex phenomena which may have a strong impact on agriculture, society, water resources, and ecosystems. In Romania, drought has a very strong impact on agriculture and affects 7.1 million ha, which represent 48% of the total agricultural land. The south, southeast, and eastern parts of Romania, including the Dobrogea region, are the most affected areas. During extremely dry years the average yields of various crops represent only 35% ÷ 60% of the potential yields. By employing three different drought indices (e.g. the Standardized Precipitation Index (SPI), the Standardized Precipitation Evapotranspiration Index (SPEI) and the Palmer Drought Severity Index (PDSI), we show that there is a significant trend towards aridity especially from the 1980’s up to present in the south-eastern part of Romania. The Standardized Precipitation-Evapotranspiration Index (SPEI) at Sulina station (situated in the Doborgea region) for 12 months (SPEI12) indicates that over the last 30 years, this region was continuously affected by prolong droughts and there is a statistically significant shift towards dryer periods over the last 30 years compared to the period 1877 – 1990, thus indicating a critical situation for this region. Over the last 30 years, the long-term drought variability (SPI12, SPEI12, and PDSI) has increased both in duration and intensity up to maximum rates. The driest summers on record, over the region, are 2001, 2003 and 2007. These extremely dry summers are unprecedented throughout the observational record (~145 years). The history of drought in Dobrogea includes also many dry years, of which are to be mentioned: 1894, 1888, 1904, 1918, 1934, 1945.</p>


2019 ◽  
Vol 43 (5) ◽  
pp. 627-642 ◽  
Author(s):  
Luis Eduardo Quesada-Hernández ◽  
Oscar David Calvo-Solano ◽  
Hugo G Hidalgo ◽  
Paula M Pérez-Briceño ◽  
Eric J Alfaro

The Central American Dry Corridor (CADC) is a sub-region in the isthmus that is relatively drier than the rest of the territory. Traditional delineations of the CADC’s boundaries start at the Pacific coast of southern Mexico, stretching south through Central America’s Pacific coast down to northwestern Costa Rica (Guanacaste province). Using drought indices (Standardized Precipitation Index, Modified Rainfall Anomaly Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Palmer Drought Z-Index and the Reconnaissance Drought Index) along with a definition of aridity as the ratio of potential evapotranspiration (representing demand of water from the atmosphere) over precipitation (representing the supply of water), we proposed a CADC delineation that changes for normal, dry and wet years. The identification of areas that change their classification during extremely dry conditions is important because these areas may indicate the location of future expansion of aridity associated with climate change. In the same way, the delineation of the CADC during wet extremes allows the identification of locations that remain part of the CADC even during the wettest years and that may require special attention from the authorities.


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


2008 ◽  
Vol 9 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Eleanor J. Burke ◽  
Simon J. Brown

Abstract The uncertainty in the projection of future drought occurrence was explored for four different drought indices using two model ensembles. The first ensemble expresses uncertainty in the parameter space of the third Hadley Centre climate model, and the second is a multimodel ensemble that additionally expresses structural uncertainty in the climate modeling process. The standardized precipitation index (SPI), the precipitation and potential evaporation anomaly (PPEA), the Palmer drought severity index (PDSI), and the soil moisture anomaly (SMA) were derived for both a single CO2 (1×CO2) and a double CO2 (2×CO2) climate. The change in moderate drought, defined by the 20th percentile of the relevant 1×CO2 distribution, was calculated. SPI, based solely on precipitation, shows little change in the proportion of the land surface in drought. All the other indices, which include a measure of the atmospheric demand for moisture, show a significant increase with an additional 5%–45% of the land surface in drought. There are large uncertainties in regional changes in drought. Regions where the precipitation decreases show a reproducible increase in drought across ensemble members and indices. In other regions the sign and magnitude of the change in drought is dependent on index definition and ensemble member, suggesting that the selection of appropriate drought indices is important for impact studies.


Author(s):  
L. Sathya ◽  
R. Lalitha

Droughts are regional phenomena, which are considered as one of the major natural environmental hazards and severely affect the water resources. Climate variability may result in harmful drought periods in semiarid regions. Meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. This study compares the performance of three indices of Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI) End Palmer Drought Severity Index (PNPI) to predict long-term drought events using the Thomas-Feiring Model and historical data. For studies of areal drought extent, the 61 years (1951-2011) historical rainfall data of Trichy District were utilized to generate 58 years (2012-2070) synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results show that SPI and PNPI perform similarly with regard to drought identification and detailed analysis to determine the characteristics of long-term drought. Finally, the RAI indicated significant deviations from normalized natural processes.


2020 ◽  
Vol 24 (6) ◽  
pp. 2921-2930 ◽  
Author(s):  
Yuting Yang ◽  
Shulei Zhang ◽  
Michael L. Roderick ◽  
Tim R. McVicar ◽  
Dawen Yang ◽  
...  

Abstract. Anthropogenic warming has been projected to increase global drought for the 21st century when calculated using traditional offline drought indices. However, this contradicts observations of the overall global greening and little systematic change in runoff over the past few decades and climate projections of future greening with slight increases in global runoff for the coming century. This calls into question the drought projections based on traditional offline drought indices. Here we calculate a widely used traditional drought index (i.e., the Palmer Drought Severity Index, PDSI) using direct outputs from 16 Coupled Model Intercomparison Project Phase 5 (CMIP5) models (PDSI_CMIP5) such that the hydrologic consistency between PDSI_CMIP5 and CMIP5 models is maintained. We find that the PDSI_CMIP5-depicted drought increases (in terms of drought severity, frequency, and extent) are much smaller than that reported when PDSI is calculated using the traditional offline approach that has been widely used in previous drought assessments under climate change. Further analyses indicate that the overestimation of PDSI drought increases reported previously using the PDSI is primarily due to ignoring the vegetation response to elevated atmospheric CO2 concentration ([CO2]) in the traditional offline calculations. Finally, we show that the overestimation of drought using the traditional PDSI approach can be minimized by accounting for the effect of CO2 on evapotranspiration.


2014 ◽  
Vol 15 (5) ◽  
pp. 1900-1912 ◽  
Author(s):  
John T. Abatzoglou ◽  
Renaud Barbero ◽  
Jacob W. Wolf ◽  
Zachary A. Holden

Abstract Drought indices are often used for monitoring interannual variability in macroscale hydrology. However, the diversity of drought indices raises several issues: 1) which indices perform best and where; 2) does the incorporation of potential evapotranspiration (PET) in indices strengthen relationships, and how sensitive is the choice of PET methods to such results; 3) what additional value is added by using higher-spatial-resolution gridded climate layers; and 4) how have observed relationships changed through time. Standardized precipitation index, standardized precipitation evapotranspiration index (SPEI), Palmer drought severity index, and water balance runoff (WBR) model output were correlated to water-year runoff for 21 unregulated drainage basins in the Pacific Northwest of the United States. SPEI and WBR with time scales encompassing the primary precipitation season maximized the explained variance in water-year runoff in most basins. Slightly stronger correlations were found using PET estimates from the Penman–Monteith method over the Thornthwaite method, particularly for time periods that incorporated the spring and summer months in basins that receive appreciable precipitation during the growing season. Indices computed using high-resolution climate surfaces explained over 10% more variability than metrics derived from coarser-resolution datasets. Increased correlation in the latter half of the study period was partially attributable to increased streamflow variability in recent decades as well as to improved climate data quality across the interior mountain watersheds.


2010 ◽  
Vol 23 (7) ◽  
pp. 1696-1718 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Santiago Beguería ◽  
Juan I. López-Moreno

Abstract The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an increase in drought severity associated with higher water demand as a result of evapotranspiration. Relative to the sc-PDSI, the SPEI has the advantage of being multiscalar, which is crucial for drought analysis and monitoring.


Sign in / Sign up

Export Citation Format

Share Document