scholarly journals Performance of Drought Indices in Trichy Region, Tamil Nadu

Author(s):  
L. Sathya ◽  
R. Lalitha

Droughts are regional phenomena, which are considered as one of the major natural environmental hazards and severely affect the water resources. Climate variability may result in harmful drought periods in semiarid regions. Meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. This study compares the performance of three indices of Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI) End Palmer Drought Severity Index (PNPI) to predict long-term drought events using the Thomas-Feiring Model and historical data. For studies of areal drought extent, the 61 years (1951-2011) historical rainfall data of Trichy District were utilized to generate 58 years (2012-2070) synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results show that SPI and PNPI perform similarly with regard to drought identification and detailed analysis to determine the characteristics of long-term drought. Finally, the RAI indicated significant deviations from normalized natural processes.

2019 ◽  
Vol 43 (5) ◽  
pp. 627-642 ◽  
Author(s):  
Luis Eduardo Quesada-Hernández ◽  
Oscar David Calvo-Solano ◽  
Hugo G Hidalgo ◽  
Paula M Pérez-Briceño ◽  
Eric J Alfaro

The Central American Dry Corridor (CADC) is a sub-region in the isthmus that is relatively drier than the rest of the territory. Traditional delineations of the CADC’s boundaries start at the Pacific coast of southern Mexico, stretching south through Central America’s Pacific coast down to northwestern Costa Rica (Guanacaste province). Using drought indices (Standardized Precipitation Index, Modified Rainfall Anomaly Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Palmer Drought Z-Index and the Reconnaissance Drought Index) along with a definition of aridity as the ratio of potential evapotranspiration (representing demand of water from the atmosphere) over precipitation (representing the supply of water), we proposed a CADC delineation that changes for normal, dry and wet years. The identification of areas that change their classification during extremely dry conditions is important because these areas may indicate the location of future expansion of aridity associated with climate change. In the same way, the delineation of the CADC during wet extremes allows the identification of locations that remain part of the CADC even during the wettest years and that may require special attention from the authorities.


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


2009 ◽  
Vol 48 (6) ◽  
pp. 1217-1229 ◽  
Author(s):  
Steven M. Quiring

Abstract Drought is a complex phenomenon that is difficult to accurately describe because its definition is both spatially variant and context dependent. Decision makers in local, state, and federal agencies commonly use operational drought definitions that are based on specific drought index thresholds to trigger water conservation measures and determine levels of drought assistance. Unfortunately, many state drought plans utilize operational drought definitions that are derived subjectively and therefore may not be appropriate for triggering drought responses. This paper presents an objective methodology for establishing operational drought definitions. The advantages of this methodology are demonstrated by calculating meteorological drought thresholds for the Palmer drought severity index, the standardized precipitation index, and percent of normal precipitation using both station and climate division data from Texas. Results indicate that using subjectively derived operational drought definitions may lead to over- or underestimating true drought severity. Therefore, it is more appropriate to use an objective location-specific method for defining operational drought thresholds.


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 109
Author(s):  
Matthew P. Lucas ◽  
Clay Trauernicht ◽  
Abby G. Frazier ◽  
Tomoaki Miura

Spatially explicit, wall-to-wall rainfall data provide foundational climatic information but alone are inadequate for characterizing meteorological, hydrological, agricultural, or ecological drought. The Standardized Precipitation Index (SPI) is one of the most widely used indicators of drought and defines localized conditions of both drought and excess rainfall based on period-specific (e.g., 1-month, 6-month, 12-month) accumulated precipitation relative to multi-year averages. A 93-year (1920–2012), high-resolution (250 m) gridded dataset of monthly rainfall available for the State of Hawai‘i was used to derive gridded, monthly SPI values for 1-, 3-, 6-, 9-, 12-, 24-, 36-, 48-, and 60-month intervals. Gridded SPI data were validated against independent, station-based calculations of SPI provided by the National Weather Service. The gridded SPI product was also compared with the U.S. Drought Monitor during the overlapping period. This SPI product provides several advantages over currently available drought indices for Hawai‘i in that it has statewide coverage over a long historical period at high spatial resolution to capture fine-scale climatic gradients and monitor changes in local drought severity.


2020 ◽  
Vol 21 (7) ◽  
pp. 1513-1530 ◽  
Author(s):  
Lingcheng Li ◽  
Dunxian She ◽  
Hui Zheng ◽  
Peirong Lin ◽  
Zong-Liang Yang

AbstractThis study elucidates drought characteristics in China during 1980–2015 using two commonly used meteorological drought indices: standardized precipitation index (SPI) and standardized precipitation–evapotranspiration index (SPEI). The results show that SPEI characterizes an overall increase in drought severity, area, and frequency during 1998–2015 compared with those during 1980–97, mainly due to the increasing potential evapotranspiration. By contrast, SPI does not reveal this phenomenon since precipitation does not exhibit a significant change overall. We further identify individual drought events using the three-dimensional (i.e., longitude, latitude, and time) clustering algorithm and apply the severity–area–duration (SAD) method to examine the drought spatiotemporal dynamics. Compared to SPI, SPEI identifies a lower drought frequency but with larger total drought areas overall. Additionally, SPEI identifies a greater number of severe drought events but a smaller number of slight drought events than the SPI. Approximately 30% of SPI-detected drought grids are not identified as drought by SPEI, and 40% of SPEI-detected drought grids are not recognized as drought by SPI. Both indices can roughly capture the major drought events, but SPEI-detected drought events are overall more severe than SPI. From the SAD analysis, SPI tends to identify drought as more severe over small areas within 1 million km2 and short durations less than 2 months, whereas SPEI tends to delineate drought as more severe across expansive areas larger than 3 million km2 and periods longer than 3 months. Given the fact that potential evapotranspiration increases in a warming climate, this study suggests SPEI may be more suitable than SPI in monitoring droughts under climate change.


2018 ◽  
Vol 31 (17) ◽  
pp. 6897-6911 ◽  
Author(s):  
Chuanpeng Zhao ◽  
Yaohuan Huang ◽  
Zhonghua Li ◽  
Mingxing Chen

Global changes, such as human activities and climate change, increase the odds of worsening drought. The Gravity Recovery and Climate Experiment (GRACE) satellite provides an opportunity to monitor drought levels by the total amount of water, instead of using a small finite set of water cycle elements or indirect indicators. The potential gap lies in the insufficient size of the GRACE record. The database does not meet the requirements of a stationary annual cycle calculated over a relatively long period as recommended by the IPCC, and the disturbance from long-term global changes is often not considered. In this work, a GRACE-based modulated water deficit (GRACE-MWD) process for drought monitoring under the modulated annual cycle (MAC) reference frame in southwest China was proposed. GRACE-MWD achieved a higher ratio of agreement with the standardized precipitation evapotranspiration index at a time scale of 3 months (SPEI03): it ranged from 0.48 to 0.84, while the GRACE-based drought severity index (GRACE-DSI) ranged from 0.48 to 0.68. Compared with remote sensing datasets widely used in drought monitoring, GRACE-MWD data are less affected by seasonality from land-cover categories, which benefit from the MAC reference frame. The ratio-of-agreement metric for the study area showed that GRACE-MWD had a time scale between 7 and 11 months in reference to SPEI and the standardized precipitation index (SPI). The stability of the MAC reference frame to GRACE-MWD was further discussed when GRACE records were extended and was more stable than that of the stationary annual cycle. GRACE-MWD meets global changes via an adaptive reference frame, which is worthy of generalizing to global applications.


2008 ◽  
Vol 9 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Eleanor J. Burke ◽  
Simon J. Brown

Abstract The uncertainty in the projection of future drought occurrence was explored for four different drought indices using two model ensembles. The first ensemble expresses uncertainty in the parameter space of the third Hadley Centre climate model, and the second is a multimodel ensemble that additionally expresses structural uncertainty in the climate modeling process. The standardized precipitation index (SPI), the precipitation and potential evaporation anomaly (PPEA), the Palmer drought severity index (PDSI), and the soil moisture anomaly (SMA) were derived for both a single CO2 (1×CO2) and a double CO2 (2×CO2) climate. The change in moderate drought, defined by the 20th percentile of the relevant 1×CO2 distribution, was calculated. SPI, based solely on precipitation, shows little change in the proportion of the land surface in drought. All the other indices, which include a measure of the atmospheric demand for moisture, show a significant increase with an additional 5%–45% of the land surface in drought. There are large uncertainties in regional changes in drought. Regions where the precipitation decreases show a reproducible increase in drought across ensemble members and indices. In other regions the sign and magnitude of the change in drought is dependent on index definition and ensemble member, suggesting that the selection of appropriate drought indices is important for impact studies.


2014 ◽  
Vol 20 ◽  
pp. 52-64
Author(s):  
Mansur Bello Dogondaji ◽  
Aishat Muhammed

Meteorological drought disaster is a serious problem in the Sahelian region of the world. This strongly affects the hydrology of the region and creates severe constraint to agriculture and water management. This paper therefore, examines the rainfall characteristics and the extent of meteorological drought in Sokoto state, Nigeria. Daily rainfall data were obtained for a period of four decades (1970-2009) from Nigerian Meteorological Agency (NIMET) through Sultan Abubakar III International Airport, Sokoto Synoptic Station. Data collected were analysed using statistical techniques. The result of the descriptive statistics varies from year to year and slight increase of mean monthly rainfall was observed. Standardized Precipitation Index (SPI) and Rainfall Anomaly Index (RAI) were used in classifying drought severity into severe, moderate and mild conditions. The result is already anticipated since Sokoto State lies within the Sudano-Sahelian region that generally known to be draught prone. Recommendations were offered based on the outcome of the result.


2021 ◽  
Author(s):  
Sifang Feng ◽  
Zengchao Hao

<p>Compound dry and hot events (CDHEs) are commonly defined as the concurrent or consecutive occurrences of the two events, which could lead to larger negative impacts than do individual extremes. The variation of CDHEs has gained increased attention in the past decades. Previous studies have detected changes in the frequency, duration, and spatial extent at regional and global scales based on observations and model simulations. However, these studies mainly focus on a single drought indicator. In the past decades, different drought indicators have been applied to characterize drought conditions, such as Standardized Precipitation Index (SPI), and Standardized Precipitation-Evapotranspiration Index (SPEI), and Palmer Drought Severity Index (PDSI). Due to the difference in these drought indicators in characterizing droughts, evaluation of CDHEs based on different drought indices may lead to a different magnitude of changes (or even opposite direction of changes). However, quantitative analysis of the uncertainties in the variation of CDHEs is still lacking. In this study, we quantitatively evaluate the uncertainties of CDHEs variations ove global areas due to differences in drought indices. Results from this study could further our understanding of changes in CDHEs under global warming.</p>


2014 ◽  
Vol 15 (5) ◽  
pp. 1900-1912 ◽  
Author(s):  
John T. Abatzoglou ◽  
Renaud Barbero ◽  
Jacob W. Wolf ◽  
Zachary A. Holden

Abstract Drought indices are often used for monitoring interannual variability in macroscale hydrology. However, the diversity of drought indices raises several issues: 1) which indices perform best and where; 2) does the incorporation of potential evapotranspiration (PET) in indices strengthen relationships, and how sensitive is the choice of PET methods to such results; 3) what additional value is added by using higher-spatial-resolution gridded climate layers; and 4) how have observed relationships changed through time. Standardized precipitation index, standardized precipitation evapotranspiration index (SPEI), Palmer drought severity index, and water balance runoff (WBR) model output were correlated to water-year runoff for 21 unregulated drainage basins in the Pacific Northwest of the United States. SPEI and WBR with time scales encompassing the primary precipitation season maximized the explained variance in water-year runoff in most basins. Slightly stronger correlations were found using PET estimates from the Penman–Monteith method over the Thornthwaite method, particularly for time periods that incorporated the spring and summer months in basins that receive appreciable precipitation during the growing season. Indices computed using high-resolution climate surfaces explained over 10% more variability than metrics derived from coarser-resolution datasets. Increased correlation in the latter half of the study period was partially attributable to increased streamflow variability in recent decades as well as to improved climate data quality across the interior mountain watersheds.


Sign in / Sign up

Export Citation Format

Share Document