Impact of land management on fire resilience and carbon fate in blanket bogs: The FireBlanket project

Author(s):  
Roxane Andersen ◽  
Stacey Felgate ◽  
Paula Fernandez-Garcia ◽  
Paul Gaffney ◽  
Peter Gilbert ◽  
...  

<p>Maintenance and enhancement of peatland carbon storage is a major policy objective towards meeting greenhouse gas (GHG) targets. Management interventions can influence both the storage capacity and the vulnerability of the stock to climate-change induced increases in drought frequency and severity, and incidence of wildfires. Quantification of these interactions is vital in informing best management practice, but is also challenging, given the ephemeral nature of climatic extremes and the usual paucity of high-quality ground-based observations within an area of interest capable of providing the necessary pre-impact and control data.</p><p>Following a dry and warm spell in spring 2019, a large wildfire burnt approximately >60 km<sup>2</sup> of blanket bog and wet heath within the Flow Country peatlands of Caithness and Sutherland, North Scotland. While the Flow Country is a site of global significance currently under consideration for UNESCO World Heritage Site Status, it has also been substantially modified in places by drainage and notably forestry (670 km<sup>2</sup>) and is now undergoing rapid and large-scale restoration. Serendipitously, the fire scar impacted the whole range of land-uses and occurred in an area actively used for research, and therefore where some baseline datasets were available.</p><p>The NERC funded FireBlanket project used this opportunity to investigate how land-uses interacted with wildfire in terms of 1) InSAR-derived “bog breathing” patterns exhibited during the 2018 drought 2) immediate and longer-term effects on vegetation communities 3) export and fate of organic carbon from land to ocean. By understanding how different management strategies of forestry and forest-to-bog restoration influence fire risk and damage, we hope to inform decision-making in the future.</p><p>Our preliminary results show that in near-natural and restored (drain-blocked) blanket bogs, the drought of 2018 led to a rapid surface compression that maintained near-surface moisture until 2019, in turn reducing the severity of the wildfire. In drained and degraded blanket bogs, this mechanical feedback is absent, due to higher bulk density and differences in vegetation assemblages, notably reduced cover of Sphagnum mosses. In those areas, the 2018 drought led to a rapid and sustained loss of moisture in the upper peat layers, associated with higher burn severity and more pronounced fire damage on vegetation. Furthermore, while DOM concentrations increased post-fire in streams receiving water from all burnt areas compared to unburnt ones, the changes were more pronounced in catchments with man-made drains.</p><p>Whilst further data processing and analysis is still underway, our study currently suggests that restoration is likely to increase wildfire resilience and reduce wildfire severity. When taking management decisions at the landscape scale, strategic re-wetting around vulnerable areas (e.g. highly degraded or undergoing forest-to-bog management leading to large volumes of brash on the ground) may help reduce the risks of occurrence of large catastrophic wildfires, and help minimise the carbon losses associated with these events.</p>

Author(s):  
Ron Avi Astor ◽  
Rami Benbenisthty

Since 2005, the bullying, school violence, and school safety literatures have expanded dramatically in content, disciplines, and empirical studies. However, with this massive expansion of research, there is also a surprising lack of theoretical and empirical direction to guide efforts on how to advance our basic science and practical applications of this growing scientific area of interest. Parallel to this surge in interest, cultural norms, media coverage, and policies to address school safety and bullying have evolved at a remarkably quick pace over the past 13 years. For example, behaviors and populations that just a decade ago were not included in the school violence, bullying, and school safety discourse are now accepted areas of inquiry. These include, for instance, cyberbullying, sexting, social media shaming, teacher–student and student–teacher bullying, sexual harassment and assault, homicide, and suicide. Populations in schools not previously explored, such as lesbian, gay, bisexual, transgender, and queer students and educators and military- and veteran-connected students, become the foci of new research, policies, and programs. As a result, all US states and most industrialized countries now have a complex quilt of new school safety and bullying legislation and policies. Large-scale research and intervention funding programs are often linked to these policies. This book suggests an empirically driven unifying model that brings together these previously distinct literatures. This book presents an ecological model of school violence, bullying, and safety in evolving contexts that integrates all we have learned in the 13 years, and suggests ways to move forward.


Author(s):  
Na Li ◽  
Baofeng Jiao ◽  
Lingkun Ran ◽  
Zongting Gao ◽  
Shouting Gao

AbstractWe investigated the influence of upstream terrain on the formation of a cold frontal snowband in Northeast China. We conducted numerical sensitivity experiments that gradually removed the upstream terrain and compared the results with a control experiment. Our results indicate a clear negative effect of upstream terrain on the formation of snowbands, especially over large-scale terrain. By thoroughly examining the ingredients necessary for snowfall (instability, lifting and moisture), we found that the release of mid-level conditional instability, followed by the release of low-level or near surface instabilities (inertial instability, conditional instability or conditional symmetrical instability), contributed to formation of the snowband in both experiments. The lifting required for the release of these instabilities was mainly a result of frontogenetic forcing and upper gravity waves. However, the snowband in the control experiment developed later and was weaker than that in the experiment without upstream terrain. Two factors contributed to this negative topographic effect: (1) the mountain gravity waves over the upstream terrain, which perturbed the frontogenetic circulation by rapidly changing the vertical motion and therefore did not favor the release of instabilities in the absence of persistent ascending motion; and (2) the decrease in the supply of moisture as a result of blocking of the upstream terrain, which changed both the moisture and instability structures leeward of the mountains. A conceptual model is presented that shows the effects of the instabilities and lifting on the development of cold frontal snowbands in downstream mountains.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
S. J. Eder ◽  
P. G. Grützmacher ◽  
M. Rodríguez Ripoll ◽  
J. F. Belak

Abstract Depending on the mechanical and thermal energy introduced to a dry sliding interface, the near-surface regions of the mated bodies may undergo plastic deformation. In this work, we use large-scale molecular dynamics simulations to generate “differential computational orientation tomographs” (dCOT) and thus highlight changes to the microstructure near tribological FCC alloy surfaces, allowing us to detect subtle differences in lattice orientation and small distances in grain boundary migration. The analysis approach compares computationally generated orientation tomographs with their undeformed counterparts via a simple image analysis filter. We use our visualization method to discuss the acting microstructural mechanisms in a load- and time-resolved fashion, focusing on sliding conditions that lead to twinning, partial lattice rotation, and grain boundary-dominated processes. Extracting and laterally averaging the color saturation value of the generated tomographs allows us to produce quantitative time- and depth-resolved maps that give a good overview of the progress and severity of near-surface deformation. Corresponding maps of the lateral standard deviation in the color saturation show evidence of homogenization processes occurring in the tribologically loaded microstructure, frequently leading to the formation of a well-defined separation between deformed and undeformed regions. When integrated into a computational materials engineering framework, our approach could help optimize material design for tribological and other deformation problems. Graphic Abstract .


2021 ◽  
pp. 1-30
Author(s):  
Stephen Davis ◽  
Knut Rassmann

The Brú na Bóinne World Heritage Site, Ireland is best known for its megalithic monuments, in particular the great developed passage tombs of Knowth, Dowth, and Newgrange, and its abundance of megalithic art. However, our understanding of the wider Brú na Bóinne landscape has changed beyond all recognition in the last decade owing to the application of modern, non-invasive survey technologies – in particular LiDAR and large-scale geophysical survey – and most recently as a result of the hot, dry summer of 2018 which revealed a series of remarkable cropmarks between Newgrange and the River Boyne. Despite a lack of excavation it can be argued, based on their morphological characteristics, that many of the structures revealed belong within the corpus of late Neolithic ritual/ceremonial structures, including earthen henges, square-in-circle monuments, palisaded enclosures, and pit/post-alignments. These display both extraordinary diversity, yet also commonality of design and architecture, both as a group and with the passage tombs that preceded them. This paper provides an up-to-date survey of the late Neolithic and presumed late Neolithic landscape of Brú na Bóinne. It provides new evidence and new insights from ongoing survey campaigns, suggesting parallels within the British Neolithic but also insular development within some monument classes.


2021 ◽  
Vol 13 (13) ◽  
pp. 2564
Author(s):  
Mauro Martini ◽  
Vittorio Mazzia ◽  
Aleem Khaliq ◽  
Marcello Chiaberge

The increasing availability of large-scale remote sensing labeled data has prompted researchers to develop increasingly precise and accurate data-driven models for land cover and crop classification (LC&CC). Moreover, with the introduction of self-attention and introspection mechanisms, deep learning approaches have shown promising results in processing long temporal sequences in the multi-spectral domain with a contained computational request. Nevertheless, most practical applications cannot rely on labeled data, and in the field, surveys are a time-consuming solution that pose strict limitations to the number of collected samples. Moreover, atmospheric conditions and specific geographical region characteristics constitute a relevant domain gap that does not allow direct applicability of a trained model on the available dataset to the area of interest. In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones. In particular, we perform a thorough analysis of domain adaptation applied to challenging multi-spectral, multi-temporal data, accurately highlighting the advantages of adapting state-of-the-art self-attention-based models for LC&CC to different target zones where labeled data are not available. Extensive experimentation demonstrated significant performance and generalization gain in applying domain-adversarial training to source and target regions with marked dissimilarities between the distribution of extracted features.


1990 ◽  
Vol 80 (6A) ◽  
pp. 1677-1695 ◽  
Author(s):  
Ik Bum Kang ◽  
George A. McMechan

Abstract Full wave field modeling of wide-aperture data is performed with a pseudospectral implementation of the elastic wave equation. This approach naturally produces three-component stress and two-component particle displacement, velocity, and acceleration seismograms for compressional, shear, and Rayleigh waves. It also has distinct advantages in terms of computational requirements over finite-differencing when data from large-scale structures are to be modeled at high frequencies. The algorithm is applied to iterative two-dimensional modeling of seismograms from a survey performed in 1985 by The University of Texas at El Paso and The University of Texas at Dallas across the Anadarko basin and the Wichita Mountains in southwestern Oklahoma. The results provide an independent look at details of near-surface structure and reflector configurations. Near-surface (<3 km deep) structure and scattering effects account for a large percentage (>70 per cent) of the energy in the observed seismograms. The interpretation of the data is consistent with the results of previous studies of these data, but provides considerably more detail. Overall, the P-wave velocities in the Wichita Uplift are more typical of the middle crust than the upper crust (5.3 to 7.1 km/sec). At the surface, the uplift is either exposed as weathered outcrop (5.0 to 5.3 km/sec) or is overlain with sediments of up to 0.4 km in thickness, ranging in velocity from 2.7 to 3.4 km/sec, generally increasing with depth. The core of the uplift is relatively seismically transparent. A very clear, coherent reflection is observed from the Mountain View fault, which dips at ≈40° to the southwest, to at least 12 km depth. Velocities in the Anadarko Basin are typical of sedimentary basins; there is a general increase from ≈2.7 km/sec at the surface to ≈5.9 km/sec at ≈16 km depth, with discontinuous reflections at depths of ≈8, 10, 12, and 16 km.


2021 ◽  
pp. 1
Author(s):  
Yaru Guo ◽  
Yuanlong Li ◽  
Fan Wang ◽  
Yuntao Wei

AbstractNingaloo Niño – the interannually occurring warming episode in the southeast Indian Ocean (SEIO) – has strong signatures in ocean temperature and circulation and exerts profound impacts on regional climate and marine biosystems. Analysis of observational data and eddy-resolving regional ocean model simulations reveals that the Ningaloo Niño/Niña can also induce pronounced variability in ocean salinity, causing large-scale sea surface salinity (SSS) freshening of 0.15–0.20 psu in the SEIO during its warm phase. Model experiments are performed to understand the underlying processes. This SSS freshening is mutually caused by the increased local precipitation (~68%) and enhanced fresh-water transport of the Indonesian Throughflow (ITF; ~28%) during Ningaloo Niño events. The effects of other processes, such as local winds and evaporation, are secondary (~18%). The ITF enhances the southward fresh-water advection near the eastern boundary, which is critical in causing the strong freshening (> 0.20 psu) near the Western Australian coast. Owing to the strong modulation effect of the ITF, SSS near the coast bears a higher correlation with the El Niño-Southern Oscillation (0.57, 0.77, and 0.70 with Niño-3, Niño-4, and Niño-3.4 indices, respectively) than sea surface temperature (-0.27, -0.42, and -0.35) during 1993-2016. Yet, an idealized model experiment with artificial damping for salinity anomaly indicates that ocean salinity has limited impact on ocean near-surface stratification and thus minimal feedback effect on the warming of Ningaloo Niño.


2018 ◽  
Vol 76 (5) ◽  
pp. 381-394 ◽  
Author(s):  
Walter Timo de Vries ◽  
Winrich Voß

Abstract This article reviews and analyses how and why land-management practice draws on two contrasting value systems: economic and social. Land managers are at the crossroads of different value systems, which both overlap and contrast. The aim of this article is to provide an understanding of which aspects are crucial in each of the value systems, and to provide a basis for how and where the value systems can be connected and where they are contradictory. This is undertaken using an exploratory qualitative and descriptive comparison, which contrasts the epistemic logics of the value systems, the manner in which each system makes use of different scales, and the way in which decisions are made with each value system. Such an understanding is crucial to improve coherence in designing and predicting the future effects of land-management interventions. Currently, practitioners tend to design interventions based on single value systems, rather than on combining or integrating value systems. The discursive comparison provides the initial steps towards a more coherent understanding of the common ground and the missing links in value logics applied in land management. These results are relevant to provide better descriptions and predictions of the effects of land-use interventions and develop improved transdisciplinary models to predict changes and development in the utilization of land or property.


Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1685-1705
Author(s):  
Silvia Salas-Romero ◽  
Alireza Malehmir ◽  
Ian Snowball ◽  
Benoît Dessirier

Abstract. Quick-clay landslides are common geohazards in Nordic countries and Canada. The presence of potential quick clays is confirmed using geotechnical investigations, but near-surface geophysical methods, such as seismic and resistivity surveys, can also help identify coarse-grained materials associated with the development of quick clays. We present the results of reflection seismic investigations on land and in part of the Göta River in Sweden, along which many quick-clay landslide scars exist. This is the first time that such a large-scale reflection seismic investigation has been carried out to study the subsurface structures associated with quick-clay landslides. The results also show a reasonable correlation with radio magnetotelluric and travel-time tomography models of the subsurface. Other ground geophysical data, such as high magnetic values, suggest a positive correlation with an increased thickness of the coarse-grained layer and shallower depths to the top of the bedrock and the top of the coarse-grained layer. The morphology of the river bottom and riverbanks, e.g. subaquatic landslide deposits, is shown by side-scan sonar and bathymetric data. Undulating bedrock, covered by subhorizontal sedimentary glacial and postglacial deposits, is clearly revealed. An extensive coarse-grained layer (P-wave velocity mostly between 1500 and 2500 m s−1 and resistivity from approximately 80 to 100 Ωm) exists within the sediments and is interpreted and modelled in a regional context. Several fracture zones are identified within the bedrock. Hydrological modelling of the coarse-grained layer confirms its potential for transporting fresh water infiltrated in fractures and nearby outcrops located in the central part of the study area. The modelled groundwater flow in this layer promotes the leaching of marine salts from the overlying clays by seasonal inflow–outflow cycles and/or diffusion, which contributes to the formation of potential quick clays.


Sign in / Sign up

Export Citation Format

Share Document