The short-term effects of bench terrace construction for planting eucalypt trees on soil fertility

Author(s):  
Martinho A S Martins ◽  
Ana I Machado ◽  
Adriana Xavier ◽  
Ana R Lopes ◽  
Bruna R F Oliveira ◽  
...  

<p>In recent decades, the establishment of monospecific tree plantations has increased markedly. Such changes in land use may have important implications for soil properties and functions. At present, the most common monospecific tree plantations worldwide are those of eucalypt, and they have been reported to negatively affect soil functions such as carbon sequestration and soil biodiversity (macroinvertebrates). This has been attributed, at least in part, to the practice of soil mobilization prior to tree planting. Arguably, the construction of bench terraces for installing eucalypt plantation is an extreme form of soil mobilization and has become increasingly common in Central Portugal, including to facilitate forestry operations on steep slopes such as the planting itself, the application of agrichemicals for fertilization and weed control, mechanical control of the understory fuel load, and the logging and extraction of wood. While bench terracing is a technique that aims at soil and water conservation on steep slopes that are otherwise very hard to cultivate, its effectiveness has been poorly studied. Considerable rates of splash erosion have been reported on the terraces themselves during the initial period after their construction, and so have elevates rates of water erosion on steep tracks.  Slope-scale soil losses, however, are difficult to quantify, even using erosion survey methods due to the fast growth of the eucalypts. While the same is true for the associated fertility losses, the main impact of bench terracing on topsoil fertility may results from the - massive -redistribution and inversion of the soil layers up to depths of 30 cm and more. This study aimed to quantify this direct effect of bench terracing on soil nutrient status. To this end, a 10 ha forest land property was sampled before and immediately after bench terracing during summer 2019. Before bench terracing, on 4th of April 2019, soil sampling was carried out at 5 points along a transect of 100 m centred on the middle section of a South-East facing slope; after bench terracing, on 23rd July 2019, soil sampling was carried out on 5 terraces on the same slope section, separated from each other by 1 terrace. Before bench terracing, the O layer, and the 0-10 cm (A horizon) and 15-20 (B horizon) mineral soil depths were sampled at each transect point; after terracing, the 0-20 cm of mixed mineral soil depths were sampled at each terrace. The mineral soil samples were analysed with respect to PMN and HCW as well as total C, N and P. The results showed clear differences between the nutrient status of the mineral soils before and after bench terracing. The construction of bench terraces diminished all soil nutrient analysed, this not only affected the stock of soil major nutrients, but also strongly affect the labile and plant available fractions. Therefore, terracing has immediately implications in soil fertility and may impose important limitations in the kye ecological functions of forest soil such as nutrient cycling, storage and turnover.</p>

2018 ◽  
Vol 3 (02) ◽  
pp. 108-115
Author(s):  
S. P. Vista ◽  
T. B. Ghimire ◽  
T. S. Rai ◽  
B. S. Kutu ◽  
B. K. Karna

Potato is a staple food crop in high hills and mountains and a major vegetable throughout the country and one of the most important cash generating crops in Nepal. With the efforts undertaken by research and extension sectors, its productivity has significantly increased in last twenty years. However, this is not sufficient for increasing population of the country. Considering its potentiality for income, employment, industrial products, export and processing, appropriate technologies are urgent.Soil fertility evaluation is the most basic decision making tool for the sustainable soil nutrient management. Soil fertility studies and mapping is an effective way to diagnose soil status and recommend as per the need of the nutrient to particular crop in the area. This research aims to assess and prepare soil nutrient map of potato super zone, Kavrepalanchowk in Nepal. The specific objectives of the research were to assess soil texture, pH and organic matter status and simultaneously prepare soil fertility map of the potato super zone. A total of 202 soil samples were collected and nutrients were analyzed using standard procedure in the soil laboratory. Composite soil samples were collected from 6 to 10 different spots of the area at 0-20 cm depth by using soil auger. The GPS location of each soil sampling point was noted. The soil sampling point of each zone was determined by studying various aspects (area, slope, colour, texture, etc.) of the study area. Based on the nutrient status, nutrient maps were prepared and presented. Soil fertility maps were prepared by observing the critical nutrients required for the specific crops and by giving those nutrients certain ranking based on the nutrients role for the crop. The soil of Potato super zone was mostly found to be silty loam, moderately acidic (pH 5.9), medium in organic matter content (2.67%) and total nitrogen (0.13%), high in available phosphorus content (56 kg/ha) and available potassium (356kg/ha). There is also sandy loam, loam and silty clay loam types of soil in the area. Soil fertility maps were prepared by setting criteria based on nutrient status that were tested in the laboratory and on the basis of nutrients that are critical for each crops of the super zones. Vegetable super zone soil was found having medium (50%) and high (30%) fertility status. Based on the soil analysis report, it could be concluded that the soils of potato super zone is fair enough for cultivating potato crop at the moment.


1994 ◽  
Vol 74 (4) ◽  
pp. 387-392 ◽  
Author(s):  
J. W. Fyles ◽  
B. Côté

The influence of 40 years of red pine and Norway spruce growth on forest floor and soil nutrient status was examined in a well-replicated series of plantation blocks established on abandoned agricultural land. Concentrations of N, P, K and Ca, and mass of organic matter and all nutrients in the forest floor were higher under spruce than under pine. In the mineral soil, concentrations of exchangeable K and Ca were higher under spruce whereas Mg, extractable P and mineralizable N did not differ between the species. Forest floor pH was higher under spruce but mineral soil pH did not differ between the species. The soil characteristics reflected litter chemistry of the two species. Relative to pine, spruce foliage litter was consistently higher in nutrient concentration and had lower acidity and higher ash bases. The results are inconsistent with the reputation of Norway spruce as a species that strongly acidifies soils, an observation that may be the result of elevated levels of Ca and K in our soils relative to those in other studies where acidification has been observed. This research demonstrates that soil fertility can be altered significantly by tree species effects over the period of a single rotation. Key words: Forest soil fertility, plantation, acidity, forest floor, leaf litter


2021 ◽  
Author(s):  
Emma Hayes ◽  
Suzanne Higgins ◽  
Donal Mullan ◽  
Josie Geris

<p>The EU Water Framework Directive (WFD) aims to target prevalent poor water quality status. Of the various contributing sources agriculture is particularly important due to the high loading rates of sediment and nutrient losses associated with fertilisation, sowing, and cropping regimes. Understanding soil nutrient status and the potential pathways for nutrient loss either through point or diffuse sources is an important step to improve water quality from an agricultural perspective. Research has demonstrated extensive in-field variability in soil nutrient status. A sampling regime that explores this variability at a sub-field scale is necessary. Traditional soil sampling consists of taking 20-30 cores per field in a W-shaped formation to produce a single bulked core, however, it generally fails to locate nutrient hotspots at finer resolutions. Inappropriate generalised fertilisation and management recommendations can be made in which nutrient hotspots or deficient zones are overlooked. Gridded soil sampling can reveal the full degree of in-field variability in nutrient status to inform more precise and site-specific nutrient applications. High soil phosphorus levels and the concept of legacy nutrient accumulation due to long-term over-application of phosphorus fertiliser in addition to animal slurry is a problem across the island of Ireland.</p><p>This research aims to locate and quantify the presence of soil nutrient hotspots at several field-scale locations in the cross-border Blackwater catchment in Northern Ireland / Republic of Ireland. Based on 35 m sampling grids, the nutrient content at unsampled locations in each field was determined using GIS interpolation techniques. Particular attention was paid to phosphorus, given its role in eutrophication. Gridded soil sampling enables the identification of nutrient hotspots within fields and when combined with an analysis of their location in relation to in-field landscape characteristics and knowledge of current management regimes, the risk of nutrient or sediment loss potential may be defined. This research concluded that traditional W soil sampling of producing one average value per field is not appropriate to uncover the degree of spatial variability in nutrient status and is inappropriate for catchment management of agricultural systems for controlling nutrient losses. Soil sampling at multiple locations per field is deemed to be cost-prohibitive for many farmers. However, sub-field scale soil sampling and appropriate geostatistical interpolation techniques can reveal the degree of variability and suggest an appropriate resolution for field-scale nutrient management that may be necessary to achieve measurable improvements in water quality.</p>


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1681
Author(s):  
Aaronn Avit Ajeng ◽  
Rosazlin Abdullah ◽  
Marlinda Abdul Malek ◽  
Kit Wayne Chew ◽  
Yeek-Chia Ho ◽  
...  

The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the reduction of chemical fertilizer by 25%, the combined treatment with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders.


2015 ◽  
Vol 77 ◽  
pp. 239-244
Author(s):  
G.B. Douglas ◽  
A.D. Mackay ◽  
M.B. Dodd ◽  
C.M. Lloyd-West ◽  
R.A.J. Gray

Development of mānuka (Leptospermum scoparium) and gorse (Ulex europaeus) is a widespread problem on pastoral hill country and is associated with reduced fertiliser inputs and grazing pressures. Using mānuka as a source for specialty products offers a potentially new, profitable enterprise alongside livestock and forestry. However, there is a lack of quantitative information on the optimum soil nutrient status and associated fertiliser programme to encourage presence and growth of this species. In a survey across 324 grazed sites, mānuka had greatest presence on steep slopes (>25o) and soils with Olsen P


2005 ◽  
Vol 32 (2) ◽  
pp. 178-188 ◽  
Author(s):  
G. TRIPATHI ◽  
S. RAM ◽  
B.M. SHARMA ◽  
G. SINGH

Decrease in productivity of pastureland is a common problem in dry areas and needs to be enhanced through conservation and management of soil biodiversity and available plant resources. Diversity and population dynamics of soil arthropods, and soil nutrients were studied in different silvopastoral (tree-integrated grassland) systems for effective management and enhancement of grassland productivity. The most prominent combinations of trees and grasses in silvopastoral systems of the selected sites were Prosopis cineraria with Cenchrus ciliaris and C. biflorus (PC), Acacia nilotica with Elusine compressa and C. ciliaris (AN), Zizyphus nummularia with C. ciliaris and E. compressa (ZN), Capparis decidua with C. biflorus and Digitaria marginatus (CD) and A. senegal with C. ciliaris and D. marginatus (AS). Pure grass blocks outside tree canopy were selected as control plots. Acari, Myriapoda, Coleoptera, Isoptera, Collembola and other soil arthropods were the major soil faunal groups. Relative densities of Acari, Myriapoda and other arthropods were highest in silvopastoral systems and those of Coleoptera, Isoptera and Collembola were highest in pure grass plots. Variations in soil arthropod populations in response to rainfall, soil water content and soil temperature indicated greater sensitivity of these groups to environmental factors. The highest densities and negative relative tree effect (RTE) values of Acari, Myriapoda and other soil arthropods in the ZN, Coleoptera in the AS, Isoptera in the CD and Collembola in the AN systems indicated that these soil arthropods preferred the silvopastoral systems involved. Seasonal variations in soil organic matter and available NH4-N, NO3-N and PO4-P were similar to those of soil arthropods. The concentrations of soil nutrients were highest in the ZN system, which had the highest densities of soil arthropods. The other systems with high populations and soil nutrient status were the CD and AS. Silvopastoral systems based on Z. nummularia, C. decidua and A. senegal promoted soil arthropod populations and enhanced soil nutrient status, highlighting the positive role of tree presence and the need for proper management to promote soil biodiversity, nutrient cycling and sustained production in a fragile environment.


1998 ◽  
Vol 28 (11) ◽  
pp. 1636-1647 ◽  
Author(s):  
Lars Vesterdal ◽  
Karsten Raulund-Rasmussen

Forest floor chemistry, i.e., C/nutrient ratios, pH, and element contents, were determined in stands of two deciduous species and five conifer species replicated at seven sites along a soil fertility gradient. There were consistent differences between forest floors of the tree species. Lodgepole pine (Pinus contorta Dougl.) forest floors had highest C/nutrient ratios, lowest pH, and the greatest element contents, whereas oak (Quercus robur L.) forest floors had low C/nutrient ratios and the lowest element contents of all species. Differences in forest floor C/nutrient ratios, pH, and element contents between sites of low nutrient status and sites of intermediate to high nutrient status were also great. Forest floor pH was related to mineral soil pH, and C/P, C/Ca, and C/K ratios were related to mineral soil nutrient concentrations. Forest floor C content was negatively related to most mineral soil fertility variables and was closest related to texture, pH, and concentrations of P and Ca. The C content of lodgepole pine and oak forest floors tended to be less affected by the soil fertility gradient. The results suggest that C storage and immobilization of nutrients in forest floors may be managed along an extensive soil gradient by selection of the proper tree species.


2019 ◽  
Author(s):  
Sabura Shara ◽  
Rony Swennen ◽  
Jozef Deckers ◽  
Fantahun Weldesenbet ◽  
Laura Vercammen ◽  
...  

Abstract. Enset (Ensete ventricosum) is a productive, drought-tolerant and multipurpose food security crop grown in the densely populated Ethiopian highlands. Its production suffers from poor soil fertility management and a bacterial wilt disease caused by the pathogen Xanthomonas campestris pv. musacearum. The aim of this study was to assess soil-plant-nutrient variation within enset home gardens over three different altitudes (ranging from 2000–3000 masl) in the Chencha catchment of the Gamo highlands and investigate whether this variation affects disease prevalence. Plant available P, Ca and Mg significantly increase with decreasing elevation but significantly decline with distance from the house. In addition, soil pH, conductivity, total organic carbon (TOC), total N, available K, Mn and Fe levels significantly decline with distance from the house. This indicates that soil fertility factors are influenced by both agro-ecology and farmers' management practices. Moreover, most nutrients reach very high levels in the garden whereas the more distant outfields are severely nutrient deprived. Plant nutrient levels are not correlated to soil nutrient levels except for N. Twenty two percent of the studied farms are symptomatic for bacterial wilt and its prevalence increases with decreasing elevation. Symptomatic gardens have a higher soil pH and available P, K and Ca levels. We conclude that soil fertility management in enset gardens should be optimized in relation to agro-ecological conditions and that both elevation and soil nutrient status need to be considered when developing strategies to curb the current Xanthomonas wilt epidemic.


2021 ◽  
Vol 34 ◽  
pp. 05003
Author(s):  
Taras Fomenko ◽  
Valentina Popova

The scientific and practical problems of deterioration of the soil fertility of apple tree plantations under drip irrigation with mineralized waters are discussed. A significant decrease in soil biodiversity was revealed, depending on the duration of cultivation of fruit plantations. A prerequisite for biologization is an objective assessment of the availability of soil nutrients under droppers, which will reduce the load on the environment as a result of the rational use of fertilizers. The necessity of biologization of garden farming and reduction of soil fatigue is actualized. The ways of solving the problem of soil fatigue and reducing the fertility of chernozem soils in fruit plantations of areas of forced use of drip irrigation with mineralized waters are outlined.


Soil Research ◽  
2015 ◽  
Vol 53 (1) ◽  
pp. 1 ◽  
Author(s):  
Getachew Agegnehu ◽  
Michael I. Bird ◽  
Paul N. Nelson ◽  
Adrian M. Bass

Deteriorating soil fertility and the concomitant decline in agricultural productivity are major concerns in many parts of the world. A pot experiment was conducted with a Ferralsol to test the hypothesis that application of biochar improves soil fertility, fertiliser-use efficiency, plant growth and productivity, particularly when combined with compost. Treatments comprised: untreated control; mineral fertiliser at rates of 280 mg nitrogen, 70 mg phosphorus and 180 mg potassium pot–1 (F); 75% F + 40 g compost pot–1 (F + Com); 100% F + 20 g willow biochar pot–1 (F + WB); 75% F + 10 g willow biochar + 20 g compost pot–1 (F + WB + Com); 100% F + 20 g acacia biochar pot–1 (F + AB); and 75% F + 10 g acacia biochar + 20 g compost pot–1 (F + AB + Com). Application of compost with fertiliser significantly increased plant growth, soil nutrient status and plant nutrient content, with shoot biomass (as a ratio of control value) decreasing in the order F + Com (4.0) > F + WB + Com (3.6) > F + WB (3.3) > F + AB + Com (3.1) > F + AB (3.1) > F (2.9) > control (1.0). Maize shoot biomass was positively significantly correlated with chlorophyll content, root biomass, plant height, and specific leaf weight (r = 0.99, 0.98, 0.96 and 0.92, respectively). Shoot and root biomass had significant correlations with soil water content, plant nutrient concentration, and soil nutrient content after harvesting. Principal component analysis (PCA) showed that the first component provided a reasonable summary of the data, accounting for ~84% of the total variance. As the plants grew, compost and biochar additions significantly reduced leaching of nutrients. In summary, separate or combined application of compost and biochar together with fertiliser increased soil fertility and plant growth. Application of compost and biochar improved the retention of water and nutrients by the soil and thereby uptake of water and nutrients by the plants; however, little or no synergistic effect was observed.


Sign in / Sign up

Export Citation Format

Share Document