Modeling of a two-phase system with phase change, applications in planetology: Earth's inner core and Transneptunian objects

2021 ◽  
Author(s):  
Robin Métayer ◽  
Renaud Deguen ◽  
Aurélie Guilbert-Lepoutre ◽  
Marine Lasbleis ◽  
Jenny Wong
Author(s):  
Didier Jamet

In direct numerical simulation (DNS) of two-phase flows, all the interfaces of the two-phase system are tracked individually. If this technique is computationally expensive, it is also very powerful, especially to study basic phenomena. In particular, it helped to better understand fundamental issues such as the forces acting on a single bubble (e.g. [1]) or the interaction of a couple of bubbles in a bubbly flow (e.g. [2,3]) and it now begins to be used to assess average models in detail ([4]). Currently, most of the basic phenomena studied involve non-miscible fluids, where no mass transfer between the phases occurs (air and water for instance). However, in many applications of industrial interest, phase-change phenomena are very important because high heat flux can be achieved with moderate temperature gradients (since the energy exchange through latent heat occurs at a constant temperature). It is thus widely used in the energy industry (nuclear energy in particular) and it is used to design compact heat exchangers (e.g. heat pipes for space or electronic devices). Moreover, basic phenomena related to phase-change are, to a large extent, still misunderstood, which make phase-change phenomena of fundamental interest as well. For instance, despite several decades of valuable scientific studies, the boiling crisis, which is an instability of the nucleate boiling regime, is still misunderstood from a fundamental point of view. It is one of the very few fundamental issues that are still open in fluid mechanics. Since DNS has already been successful to study fundamental issues in two-phase flows of non-miscible fluids, it should be successful to study these issues as well. However, the DNS of two-phase flows with phase-change is more difficult than that of two-phase flows involving non-miscible phases. These issues are both numerical and physical and some of them are discussed in this paper.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daijo Ikuta ◽  
Eiji Ohtani ◽  
Naohisa Hirao

AbstractThe Earth’s inner core comprises iron-nickel alloys with light elements. However, there is no clarity on the phase properties of these alloys. Here we show phase relations and equations of state of iron–nickel and iron–nickel–silicon alloys up to 186 gigapascals and 3090 kelvin. An ordered derivative of the body-centred cubic structure (B2) phase was observed in these alloys. Results show that nickel and silicon influence the stability field associated with the two-phase mixture of B2 and hexagonal close-packed phases under core conditions. The two-phase mixture can give the inner core density of the preliminary reference Earth model. The compressional wave velocity of the two-phase mixture under inner core conditions is consistent with that of the preliminary reference Earth model. Therefore, a mixture of B2 and hexagonal close-packed phases may exist in the inner core and accounts for the seismological properties of the inner core such as density and velocity deficits.


2013 ◽  
Vol 194 (3) ◽  
pp. 1310-1334 ◽  
Author(s):  
Renaud Deguen ◽  
Thierry Alboussière ◽  
Philippe Cardin

1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3634
Author(s):  
Grzegorz Czerwiński ◽  
Jerzy Wołoszyn

With the increasing trend toward the miniaturization of electronic devices, the issue of heat dissipation becomes essential. The use of phase changes in a two-phase closed thermosyphon (TPCT) enables a significant reduction in the heat generated even at high temperatures. In this paper, we propose a modification of the evaporation–condensation model implemented in ANSYS Fluent. The modification was to manipulate the value of the mass transfer time relaxation parameter for evaporation and condensation. The developed model in the form of a UDF script allowed the introduction of additional source equations, and the obtained solution is compared with the results available in the literature. The variable value of the mass transfer time relaxation parameter during condensation rc depending on the density of the liquid and vapour phase was taken into account in the calculations. However, compared to previous numerical studies, more accurate modelling of the phase change phenomenon of the medium in the thermosyphon was possible by adopting a mass transfer time relaxation parameter during evaporation re = 1. The assumption of ten-fold higher values resulted in overestimated temperature values in all sections of the thermosyphon. Hence, the coefficient re should be selected individually depending on the case under study. A too large value may cause difficulties in obtaining the convergence of solutions, which, in the case of numerical grids with many elements (especially three-dimensional), significantly increases the computation time.


Author(s):  
Qiaoshu Chen ◽  
Yanwen Zhang ◽  
Hui Chen ◽  
Jianbo Liu ◽  
Juewen Liu

Sign in / Sign up

Export Citation Format

Share Document