scholarly journals Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP-6 models

2020 ◽  
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.

2021 ◽  
Vol 12 (2) ◽  
pp. 367-386
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d−1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2020 ◽  
Vol 24 (1) ◽  
pp. 451-472 ◽  
Author(s):  
Lei Gu ◽  
Jie Chen ◽  
Jiabo Yin ◽  
Sylvia C. Sullivan ◽  
Hui-Min Wang ◽  
...  

Abstract. The Paris Agreement sets a long-term temperature goal to hold global warming to well below 2.0 ∘C and strives to limit it to 1.5 ∘C above preindustrial levels. Droughts with either intense severity or a long persistence could both lead to substantial impacts such as infrastructure failure and ecosystem vulnerability, and they are projected to occur more frequently and trigger intensified socioeconomic consequences with global warming. However, existing assessments targeting global droughts under 1.5 and 2.0 ∘C warming levels usually neglect the multifaceted nature of droughts and might underestimate potential risks. This study, within a bivariate framework, quantifies the change in global drought conditions and corresponding socioeconomic exposures for additional 1.5 and 2.0 ∘C warming trajectories. The drought characteristics are identified using the Standardized Precipitation Evapotranspiration Index (SPEI) combined with the run theory, with the climate scenarios projected by 13 Coupled Model Inter-comparison Project Phase 5 (CMIP5) global climate models (GCMs) under three representative concentration pathways (RCP 2.6, RCP4.5 and RCP8.5). The copula functions and the most likely realization are incorporated to model the joint distribution of drought severity and duration, and changes in the bivariate return period with global warming are evaluated. Finally, the drought exposures of populations and regional gross domestic product (GDP) under different shared socioeconomic pathways (SSPs) are investigated globally. The results show that within the bivariate framework, the historical 50-year droughts may double across 58 % of global landmasses in a 1.5 ∘C warmer world, while when the warming climbs up to 2.0 ∘C, an additional 9 % of world landmasses would be exposed to such catastrophic drought deteriorations. More than 75 (73) countries' populations (GDP) will be completely affected by increasing drought risks under the 1.5 ∘C warming, while an extra 0.5 ∘C warming will further lead to an additional 17 countries suffering from a nearly unbearable situation. Our results demonstrate that limiting global warming to 1.5 ∘C, compared with 2 ∘C warming, can perceptibly mitigate the drought impacts over major regions of the world.


2014 ◽  
Vol 5 (1) ◽  
pp. 617-647
Author(s):  
Y. Yin ◽  
Q. Tang ◽  
X. Liu

Abstract. Climate change may affect crop development and yield, and consequently cast a shadow of doubt over China's food self-sufficiency efforts. In this study we used the model projections of a couple of global gridded crop models (GGCMs) to assess the effects of future climate change on the potential yields of the major crops (i.e. wheat, rice, maize and soybean) over China. The GGCMs were forced with the bias-corrected climate data from 5 global climate models (GCMs) under the Representative Concentration Pathways (RCP) 8.5 which were made available by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). The results show that the potential yields of rice may increase over a large portion of China. Climate change may benefit food productions over the high-altitude and cold regions where are outside current main agricultural area. However, the potential yield of maize, soybean and wheat may decrease in a large portion of the current main crop planting areas such as North China Plain. Development of new agronomic management strategy may be useful for coping with climate change in the areas with high risk of yield reduction.


2020 ◽  
Author(s):  
Jeong-Bae Kim ◽  
Deg-Hyo Bae

Abstract. The changes in hydroclimatic extremes are assessed over the Asia monsoon region under 1.5 and 2.0 °C warming targets of global mean temperature above preindustrial levels based on a representative concentration pathway (RCP) 4.5 scenario. The subregions in this domain are defined by the Köppen climate classification method to identify regional climate characteristics. The change patterns of long-term hydroclimatic mean and hydroclimatic extreme among subregions are compared based on the multimodel ensemble (MME) of selected five global climate models (GCMs). Each GCM is bias corrected and then used as a meteorological forcing for a hydrological model. To simulate how the hydrologic system responds to 1.5 and 2.0 °C global warming targets, we select the variable infiltration capacity (VIC) model. The results of temperature extremes show significant change patterns over all climate zones. As the globe warms, the increasing warm extremes and the decreasing cold extremes with a high robustness occur more frequently over Asia. Meanwhile, changes in precipitation and runoff averages (and low runoff extremes) show large spatial variations in change patterns with little robustness based on intermodel agreement. Global warming is expected to significantly intensify maximum precipitation extremes in all climate zones. Regardless of regional climate characteristics, this behavior is expected to be enhanced under 2.0 °C compare to 1.5 °C warming scenario and cause the likelihood of flood risk. The spatial extent and magnitude of change patterns in runoff are modulated by those of change patterns in precipitation. More importantly, an extra 0.5 °C of global warming also leads to amplified change signals and more robust change patterns in hydroclimatic extremes, especially in cold (and polar) climate zones. The results of this study demonstrate that the clear changes in regional hydroclimatic extremes under warmer conditions over Asia, and hydroclimatic sensitivities differ based on regional climate characteristics.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1245
Author(s):  
Frank Kreienkamp ◽  
Philip Lorenz ◽  
Tobias Geiger

Climate modelling output that was provided under the latest Coupled Model Intercomparison Project (CMIP6) shows significant changes in model-specific Equilibrium Climate Sensitivity (ECS) as compared to CMIP5. The newer versions of many Global Climate Models (GCMs) report higher ECS values that result in stronger global warming than previously estimated. At the same time, the multi-GCM spread of ECS is significantly larger than under CMIP5. Here, we analyse how the differences between CMIP5 and CMIP6 affect climate projections for Germany. We use the statistical-empirical downscaling method EPISODES in order to downscale GCM data for the scenario pairs RCP4.5/SSP2-4.5 and RCP8.5/SSP5-8.5. We use data sets of the GCMs CanESM, EC-Earth, MPI-ESM, and NorESM. The results show that the GCM-specific changes in the ECS also have an impact at the regional scale. While the temperature signal under regional climate change remains comparable for both CMIP generations in the MPI-ESM chain, the temperature signal increases by up to 3 °C for the RCP8.5/SSP5-8.5 scenario pair in the EC-Earth chain. Changes in precipitation are less pronounced and they only show notable differences at the seasonal scale. The reported changes in the climate signal will have direct consequences for society. Climate change impacts previously projected for the high-emission RCP8.5 scenario might occur equally under the new SSP2-4.5 scenario.


2008 ◽  
Vol 5 (5) ◽  
pp. 1475-1491 ◽  
Author(s):  
J. Limpens ◽  
F. Berendse ◽  
C. Blodau ◽  
J. G. Canadell ◽  
C. Freeman ◽  
...  

Abstract. Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15–30% of the world's soil carbon (C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling C fluxes are largely scale dependent and most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange (NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales.


2021 ◽  
Vol 13 (5) ◽  
pp. 18164-18176
Author(s):  
Aditya Srinivasulu ◽  
Alembrhan Assefa ◽  
Chelmala Srinivasulu

The impact of climate change on rodents is well studied, however, many of these studies are restricted to the Americas.  Small- to medium-sized rodents, especially murids, are restricted in their home range and microclimatic niche breadth, and are known to be more sensitive to changes in bioclimatic conditions over time.  We analyzed the effect of future climatic scenarios in the near and distant future, using two global climate models (CanESM5 and MIROC-ES2L) for two shared socio-economic pathways (SSP2-4.5 and SSP5-8.5), on two eastern Africa endemic small-bodied mice: Stenocephalemys albipes and Mastomys awashensis. Our results indicate that while S. albipes showed increases in area of climatic suitability in the future, M. awashensis is predicted to suffer severe decline in the area of its fundamental niche.    


Sign in / Sign up

Export Citation Format

Share Document