scholarly journals Simple noise estimates and pseudoproxies for the last 21 000 years

2019 ◽  
Vol 11 (3) ◽  
pp. 1129-1152
Author(s):  
Oliver Bothe ◽  
Sebastian Wagner ◽  
Eduardo Zorita

Abstract. Climate reconstructions are means to extract the signal from uncertain paleo-observations, so-called proxies. It is essential to evaluate these reconstructions to understand and quantify their uncertainties. Similarly, comparing climate simulations and proxies requires approaches to bridge the temporal and spatial differences between both and to address their specific uncertainties. One way to achieve these two goals is so-called pseudoproxies. These are surrogate proxy records within the virtual reality of a climate simulation. They in turn depend on an understanding of the uncertainties of the real proxies including the noise characteristics disturbing the original environmental signal. Common pseudoproxy approaches so far concentrate on data with high temporal resolution over the last approximately 2000 years. Here we provide a simple but flexible noise model for potentially low-resolution sedimentary climate proxies for temperature on millennial timescales, the code for calculating a set of pseudoproxies from a simulation, and one example of pseudoproxies. The noise model considers the influence of other environmental variables, a dependence on the climate state, a bias due to changing seasonality, modifications of the archive (for example bioturbation), potential sampling variability, and a measurement error. Model, code, and data allow us to develop new ways of comparing simulation data with proxies on long timescales. Code and data are available at https://doi.org/10.17605/OSF.IO/ZBEHX (Bothe et al., 2018).

2018 ◽  
Author(s):  
Oliver Bothe ◽  
Sebastian Wagner ◽  
Eduardo Zorita

Abstract. Climate reconstructions are means to extract the signal from uncertain paleo-observations, i.e. proxies. It is essential to evaluate these to understand and quantify their uncertainties. Similarly, comparing climate simulations and proxies requires approaches to bridge the, e.g., temporal and spatial differences between both and address their specific uncertainties. One way to achieve these two goals are so called pseudoproxies. These are surrogate proxy records within, e.g., the virtual reality of a climate simulation. They in turn depend on an understanding of the uncertainties of the real proxies, i.e. the noise-characteristics disturbing the original environmental signal. Common pseudoproxy approaches so far concentrated on data with high temporal resolution from, e.g., tree-rings or ice-cores over the last approximately 2,000 years. Here we provide a simple but flexible noise model for potentially low-resolution sedimentary climate proxies for temperature on millennial time-scales, the code for calculating a set of pseudoproxies from a simulation and, for one simulation, the pseudoproxies themselves. The noise model considers the influence of other environmental variables, a dependence on the climate state, a bias due to changing seasonality, modifications of the archive (e.g., bioturbation), potential sampling variability, and a measurement error. Model, code, and data should allow to develop new ways of comparing simulation data with proxies on long time-scales. Code and data are available at https://doi.org/10.17605/OSF.IO/ZBEHX.


2020 ◽  
Author(s):  
Oliver Bothe ◽  
Eduardo Zorita

Abstract. Inferences about climate states and climate variability of the Holocene and the deglaciation rely on sparse paleo-observational proxy data. Combining these sparse proxies with output from climate simulations is a means for increasing the understanding of the climate throughout the last ~ 21 millennia. The analogue method is one approach to do this. The method takes a number of sparse proxy records and then searches within a pool of more complete information (e.g., model simulations) for analogues according to a similarity criterion. The analogue method is non-linear and allows considering the spatial covariance among proxy records. Beyond the last two millennia, we have to rely on proxies that are not only sparse in space but also irregular in time and with considerably uncertain dating. This poses additional challenges for the analogue method, which have seldom been addressed previously. The method has to address the uncertainty of the proxy-inferred variables as well as the uncertain dating. It has to cope with the irregular and non-synchronous sampling of different proxies. Here, we propose a specific way of dealing with these obstacles. We use uncertainty ellipses for tuples of individual proxy values and dates and, thereby, consider the dating as well as the data uncertainty. Results highlight the potential of the method to reconstruct the climate of the last ~ 15 millennia. However, in the present case, the reconstructions show little variability of their central estimates but large uncertainty ranges. The reconstruction by analogue provides not only a regional average record but also allows assessing the climate state compliant with the used proxy predictors. These fields reveal that uncertainty are also large locally. Our results emphasize the ambiguity of reconstructions from spatially sparse and temporally uncertain, irregularly sampled proxies.


2020 ◽  
Author(s):  
Arne Ramisch ◽  
Alexander Brauser ◽  
Mario Dorn ◽  
Cecile Blanchet ◽  
Brian Brademann ◽  
...  

Abstract. Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).


2019 ◽  
Vol 12 (11) ◽  
pp. 4571-4584 ◽  
Author(s):  
Zhiqiang Li ◽  
Yulun Zhou ◽  
Bingcheng Wan ◽  
Hopun Chung ◽  
Bo Huang ◽  
...  

Abstract. The veracity of urban climate simulation models should be systematically evaluated to demonstrate the trustworthiness of these models against possible model uncertainties. However, existing studies paid insufficient attention to model evaluation; most studies only provided some simple comparison lines between modelled variables and their corresponding observed ones on the temporal dimension. Challenges remain since such simple comparisons cannot concretely prove that the simulation of urban climate behaviours is reliable. Studies without systematic model evaluations, being ambiguous or arbitrary to some extent, may lead to some seemingly new but scientifically misleading findings. To tackle these challenges, this article proposes a methodological framework for the model evaluation of high-resolution urban climate simulations and demonstrates its effectiveness with a case study in the area of Shenzhen and Hong Kong SAR, China. It is intended to (again) remind urban climate modellers of the necessity of conducting systematic model evaluations with urban-scale climatology modelling and reduce these ambiguous or arbitrary modelling practices.


2015 ◽  
Vol 54 (2) ◽  
pp. 370-394 ◽  
Author(s):  
Julia Andrys ◽  
Thomas J. Lyons ◽  
Jatin Kala

AbstractThe authors evaluate a 30-yr (1981–2010) Weather Research and Forecast (WRF) Model regional climate simulation over the southwest of Western Australia (SWWA), a region with a Mediterranean climate, using ERA-Interim boundary conditions. The analysis assesses the spatial and temporal characteristics of climate extremes, using a selection of climate indices, with an emphasis on metrics that are relevant for forestry and agricultural applications. Two nested domains at 10- and 5-km resolution are examined, with the higher-resolution simulation resolving convection explicitly. Simulation results are compared with a high-resolution, gridded observational dataset that provides daily rainfall, minimum temperatures, and maximum temperatures. Results show that, at both resolutions, the model is able to simulate the daily, seasonal, and annual variation of temperature and precipitation well, including extreme events. The higher-resolution domain displayed significant performance gains in simulating dry-season convective precipitation, rainfall around complex terrain, and the spatial distribution of frost conditions. The high-resolution domain was, however, influenced by grid-edge effects in the southwestern margin, which reduced the ability of the domain to represent frontal rainfall along the coastal region. On the basis of these results, the authors feel confident in using the WRF Model for regional climate simulations for the SWWA, including studies that focus on the spatial and temporal representation of climate extremes. This study provides a baseline climatological description at a high resolution that can be used for impact studies and will also provide a benchmark for climate simulations driven by general circulation models.


2011 ◽  
Vol 24 (3) ◽  
pp. 674-692 ◽  
Author(s):  
Bo Christiansen

Abstract There are indications that hemispheric-mean climate reconstructions seriously underestimate the amplitude of low-frequency variability and trends. Some of the theory of linear regression and error-in-variables models is reviewed to identify the sources of this problem. On the basis of the insight gained, a reconstruction method that is supposed to minimize the underestimation is formulated. The method consists of reconstructing the local temperatures at the geographical locations of the proxies, followed by calculating the hemispheric average. The method is tested by applying it to an ensemble of surrogate temperature fields based on two climate simulations covering the last 500 and 1000 yr. Compared to the regularized expectation maximization (RegEM) truncated total least squares (TTLS) method and a composite-plus-scale method—two methods recently used in the literature—the new method strongly improves the behavior regarding low-frequency variability and trends. The potential importance in real-world situations is demonstrated by applying the methods to a set of 14 decadally smoothed proxies. Here the new method shows much larger low-frequency variability and a much colder preindustrial temperature level than the other reconstruction methods. However, this should mainly be seen as a demonstration of the potential losses and gains of variability, as the reconstructions based on the 14 decadally smoothed proxies are not very robust.


2012 ◽  
Vol 19 (5) ◽  
pp. 559-568 ◽  
Author(s):  
A. A. Tsonis ◽  
K. L. Swanson

Abstract. This review is a synthesis of work spanning the last 25 yr. It is largely based on the use of climate networks to identify climate subsystems/major modes and to subsequently study how their collective behavior explains decadal variability. The central point is that a network of coupled nonlinear subsystems may at times begin to synchronize. If during synchronization the coupling between the subsystems increases, the synchronous state may, at some coupling strength threshold, be destroyed shifting climate to a new regime. This climate shift manifests itself as a change in global temperature trend. This mechanism, which is consistent with the theory of synchronized chaos, appears to be a very robust mechanism of the climate system. It is found in the instrumental records, in forced and unforced climate simulations, as well as in proxy records spanning several centuries.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 960
Author(s):  
Fang Jin ◽  
Xin Tu ◽  
JinChao Wang ◽  
Biao Yang ◽  
KaiFeng Dong ◽  
...  

The detection resolution of a giant magneto-impedance (GMI) sensor is mainly limited by its equivalent input magnetic noise. The noise characteristics of a GMI sensor are evaluated by noise modeling and simulation, which can further optimize the circuit design. This paper first analyzes the noise source of the GMI sensor. It discusses the noise model of the circuit, the output sensitivity model and the modeling process of equivalent input magnetic noise. The noise characteristics of three modules that have the greatest impact on the output noise are then simulated. Finally, the simulation results are verified by experiments. By comparing the simulated noise spectrum curve and the experimental noise spectrum curve, it is demonstrated that the preamplifier and the multiplier contribute the most to the output white noise, and the low-pass filter plays a major role in the output 1/f noise. These modules should be given priority in the optimization of the noise of the conditioning circuit. The above results provide technical support for the practical application of low-noise GMI magnetometers.


2004 ◽  
Vol 04 (02) ◽  
pp. L297-L307 ◽  
Author(s):  
JONGHWAN LEE ◽  
GIJS BOSMAN

A 1/fγ drain current noise model for deep-submicron MOSFETs with ultrathin oxide is presented. Based on the number and correlated mobility fluctuation mechanisms, the model is derived incorporating a tunneling assisted-thermally activated process and a more realistic trap distribution inside the gate oxide layer. The effects of the device structure and processing technologies on the noise characteristics are taken into consideration through a quadratic mobility degradation factor, a parasitic resistance, a doping profile, and trap-related parameters. For ultrathin oxide MOSFETs, the trapping efficiency ratio and the scattering rate are expressed in terms of the trap distance and the inversion carrier density, enabling an accurate prediction of the noise behavior. From quantitative results simulated with extracted data, it is shown that the new model is applicable to design future CMOS devices and new device processing technologies, and is suitable to be implemented in circuit simulators.


2016 ◽  
Vol 29 (11) ◽  
pp. 4293-4314 ◽  
Author(s):  
Lucas M. Harris ◽  
Shian-Jiann Lin ◽  
ChiaYing Tu

Abstract An analytic Schmidt transformation is used to create locally refined global model grids capable of efficient climate simulation with gridcell widths as small as 10 km in the GFDL High-Resolution Atmosphere Model (HiRAM). This method of grid stretching produces a grid that varies very gradually into the region of enhanced resolution without changing the topology of the model grid and does not require radical changes to the solver. AMIP integrations were carried out with two grids stretched to 10-km minimum gridcell width: one centered over East Asia and the western Pacific warm pool, and the other over the continental United States. Robust improvements to orographic precipitation, the diurnal cycle of warm-season continental precipitation, and tropical cyclone maximum intensity were found in the region of enhanced resolution, compared to 25-km uniform-resolution HiRAM. The variations in grid size were not found to create apparent grid artifacts, and in some measures the global-mean climate improved in the stretched-grid simulations. In the enhanced-resolution regions, the number of tropical cyclones was reduced, but the fraction of storms reaching hurricane intensity increased, compared to a uniform-resolution simulation. This behavior was also found in a stretched-grid perpetual-September aquaplanet simulation with 12-km resolution over a part of the tropics. Furthermore, the stretched-grid aquaplanet simulation was also largely free of grid artifacts except for an artificial Walker-type circulation, and simulated an ITCZ in its unrefined region more resembling that of higher-resolution aquaplanet simulations, implying that the unrefined region may also be improved in stretched-grid simulations. The improvements due to stretching are attributable to improved resolution as these stretched-grid simulations were sparingly tuned.


Sign in / Sign up

Export Citation Format

Share Document