scholarly journals The Global Methane Budget: 2000–2012

Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Ben Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (~biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (T-D, exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories, and data-driven approaches (B-U, including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by T-D inversions at 558 Tg CH4 yr−1 (range [540–568]). About 60 % of global emissions are anthropogenic (range [50–65 %]). B-U approaches suggest larger global emissions (736 Tg CH4 yr−1 [596–884]) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the T-D budget, it is likely that some of the individual emissions reported by the B-U approaches are overestimated, leading to too large global emissions. Latitudinal data from T-D emissions indicate a predominance of tropical emissions (~64 % of the global budget,

2016 ◽  
Vol 8 (2) ◽  
pp. 697-751 ◽  
Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Ben Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.


2019 ◽  
Author(s):  
Jian He ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
Ed Dlugokencky ◽  
Kirk Thoning

Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections of future methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by optimizing total methane emissions (to an annual mean of 576 ± 32 Tg yr−1) to match surface observations over 1980–2017. The simulations with optimized global emissions are in general able to capture the observed global trend, variability, seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane sources (mainly from energy and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH levels) lead to methane stabilization (with an imbalance of 5 Tg yr−1) during 1999–2006, and that increases in methane sources combined with little change in sinks (despite small decreases in OH levels) during 2007–2012 lead to renewed methane growth (with an imbalance of 14 Tg yr−1 for 2007–2017). Compared to 1999–2006, both methane emissions and sinks are greater (by 31 Tg yr−1 and 22 Tg yr−1, respectively) during 2007–2017. Our results also indicate that the energy sector is more likely a major contributor to the methane renewed growth after 2006 than wetland, as increases in wetland emissions alone are not able to explain the renewed methane growth with constant anthropogenic emissions. In addition, a significant increase in wetland emissions would be required starting in 2006, if anthropogenic emissions declined, for wetland emissions to drive renewed growth in methane, which is a less likely scenario. Simulations with varying OH levels indicate that 1 % change in OH levels could lead to an annual mean of ~ 4 Tg yr−1 difference in the optimized emissions and 0.08 year difference in the estimated tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008–2015 prolong methane lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.


2020 ◽  
Vol 20 (2) ◽  
pp. 805-827 ◽  
Author(s):  
Jian He ◽  
Vaishali Naik ◽  
Larry W. Horowitz ◽  
Ed Dlugokencky ◽  
Kirk Thoning

Abstract. Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections of future methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by optimizing total methane emissions (to an annual mean of 580±34 Tg yr−1) to match surface observations over 1980–2017. The simulations with optimized global emissions are in general able to capture the observed trend, variability, seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane emissions (mainly from agriculture, energy, and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH levels) lead to methane stabilization (with an imbalance of 5 Tg yr−1) during 1999–2006 and that increases in methane emissions (mainly from agriculture, energy, and waste sectors) combined with little change in sinks (despite small decreases in OH levels) during 2007–2012 lead to renewed growth in methane (with an imbalance of 14 Tg yr−1 for 2007–2017). Compared to 1999–2006, both methane emissions and sinks are greater (by 31 and 22 Tg yr−1, respectively) during 2007–2017. Our tagged tracer analysis indicates that anthropogenic sources (such as agriculture, energy, and waste sectors) are more likely major contributors to the renewed growth in methane after 2006. A sharp increase in wetland emissions (a likely scenario) with a concomitant sharp decrease in anthropogenic emissions (a less likely scenario), would be required starting in 2006 to drive the methane growth by wetland tracer. Simulations with varying OH levels indicate that a 1 % change in OH levels could lead to an annual mean difference of ∼4 Tg yr−1 in the optimized emissions and a 0.08-year difference in the estimated tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008–2015 prolong methane's lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.


2019 ◽  
Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Joseph G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate variations over the past decade, the causes of which are still debated. Two major difficulties in reducing uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (top-down approach) to be 572 Tg CH4 yr−1 (range 538–593, corresponding to the minimum and maximum estimates of the ensemble), of which 357 Tg CH4 yr−1 or ~ 60 % are attributed to anthropogenic sources (range 50–65 %). This total emission is 27 Tg CH4 yr−1 larger than the value estimated for the period 2000–2009 and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for the period 2003–2012 (Saunois et al. 2016). Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global emissions (737 Tg CH4 yr−1, range 583–880) than top-down inversion methods, mostly because of larger estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates a predominance of tropical emissions (~ 65 % of the global budget,


2021 ◽  
Author(s):  
Emily Dowd ◽  
Christopher Wilson ◽  
Martyn Chipperfield ◽  
Manuel Gloor

&lt;p&gt;Methane (CH&lt;sub&gt;4&lt;/sub&gt;) is the second most important atmospheric greenhouse gas after carbon dioxide. Global concentrations of CH&lt;sub&gt;4&lt;/sub&gt; have been rising in the last decade and our understanding of what is driving the increase remains incomplete. Natural sources, such as wetlands, contribute to the uncertainty of the methane budget. However, anthropogenic sources, such as fossil fuels, present an opportunity to mitigate the human contribution to climate change on a relatively short timescale, since CH&lt;sub&gt;4&lt;/sub&gt; has a much shorter lifetime than carbon dioxide. Therefore, it is important to know the relative contributions of these sources in different regions.&lt;/p&gt;&lt;p&gt;We have investigated the inter-annual variation (IAV) and rising trend of CH&lt;sub&gt;4&lt;/sub&gt; concentrations using a global 3-D chemical transport model, TOMCAT. We independently tagged several regional natural and anthropogenic CH&lt;sub&gt;4&lt;/sub&gt; tracers in TOMCAT to identify their contribution to the atmospheric CH&lt;sub&gt;4&lt;/sub&gt; concentrations over the period 2009 &amp;#8211; 2018. The tagged regions were selected based on the land surface types and the predominant flux sector within each region and include subcontinental regions, such as tropical South America, boreal regions and anthropogenic regions such as Europe. We used surface CH&lt;sub&gt;4&lt;/sub&gt; fluxes derived from a previous TOMCAT-based atmospheric inversion study (Wilson et al., 2020). These atmospheric inversions were constrained by satellite and surface flask observations of CH&lt;sub&gt;4&lt;/sub&gt;, giving optimised monthly estimates for fossil fuel and non-fossil fuel emissions on a 5.6&amp;#176; horizontal grid. During the study period, the total optimised CH&lt;sub&gt;4&lt;/sub&gt; flux grew from 552 Tg/yr to 593 Tg/yr. This increase in emissions, particularly in the tropics, contributed to the increase in atmospheric CH&lt;sub&gt;4 &lt;/sub&gt;concentrations and added to the imbalance in the CH&lt;sub&gt;4&lt;/sub&gt; budget. We will use the results of the regional tagged tracers to quantify the contribution of regional methane emissions at surface observation sites, and to quantify the contributions of the natural and anthropogenic emissions from the tagged regions to the IAV and the rising methane concentrations.&lt;/p&gt;&lt;p&gt;Wilson, C., Chipperfield, M. P., Gloor, M., Parker, R. J., Boesch, H., McNorton, J., Gatti, L. V., Miller, J. B., Basso, L. S., and Monks, S. A.: Large and increasing methane emissions from Eastern Amazonia derived from satellite data, 2010&amp;#8211;2018, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1136, in review, 2020.&lt;/p&gt;


2017 ◽  
Author(s):  
Thibaud Thonat ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Isabelle Pison ◽  
Zeli Tan ◽  
...  

Abstract. Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning; this indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land surface model used to prescribe wetland emissions can be critical in correctly representing methane concentrations. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric CH4. The study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.


2020 ◽  
Vol 12 (3) ◽  
pp. 1561-1623 ◽  
Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Josep G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.


Author(s):  
Patrick A. Barker ◽  
Grant Allen ◽  
Joseph R. Pitt ◽  
Stéphane J.-B. Bauguitte ◽  
Dominika Pasternak ◽  
...  

Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH 4 ) and a sink of carbon dioxide (CO 2 ) during summer months. However, precise quantification of this regional CH 4 source and CO 2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78 000 km 2 ) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH 4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH 4 fluxes normalized to wetland area ranged between 5.93 ± 1.87 mg m −2  h −1 and 4.44 ± 0.64 mg m −2  h −1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO 2 sinks ranged between −513 ± 74 mg m −2  h −1 and −284 ± 89 mg m −2  h −1 and result from net uptake of CO 2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH 4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N 2 O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH 4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH 4 fluxes were found to be significantly higher than the CH 4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.


2008 ◽  
Vol 48 (2) ◽  
pp. 114 ◽  
Author(s):  
Keith R. Lassey

Over the past three centuries, the atmospheric methane burden has grown 2.5-fold, reaching levels unprecedented in at least 650 000 years. Agricultural expansion has played a large part in this anthropogenic signal, with enterically fermented methane emitted by farmed ruminant livestock accounting for about one quarter of all anthropogenic emissions. This paper summarises the range of measurements that give confidence in estimates of the emission per animal and per unit feed intake and in their extrapolation to national and global emission inventories, while noting also some of the inherent uncertainties. Global emissions are discussed in the context of the evolving global methane cycle.


Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
R. J. Andres ◽  
J. S. Gregg ◽  
L. Losey ◽  
G. Marland ◽  
T. A. Boden

Sign in / Sign up

Export Citation Format

Share Document