scholarly journals Spatially resolved infrared radiofluorescence: single-grain K-feldspar dating using CCD imaging

Geochronology ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 299-319
Author(s):  
Dirk Mittelstraß ◽  
Sebastian Kreutzer

Abstract. The success of luminescence dating as a chronological tool in Quaternary science builds upon innovative methodological approaches, providing new insights into past landscapes. Infrared radiofluorescence (IR-RF) on K-feldspar is such an innovative method that was already introduced two decades ago. IR-RF promises considerable extended temporal range and a simple measurement protocol, with more dating applications being published recently. To date, all applications have used multi-grain measurements. Herein, we take the next step by enabling IR-RF measurements on a single grain level. Our contribution introduces spatially resolved infrared radiofluorescence (SR IR-RF) on K-feldspars and intends to make SR IR-RF broadly accessible as a geochronological tool. In the first part of the article, we detail equipment, CCD camera settings and software needed to perform and analyse SR IR-RF measurements. We use a newly developed ImageJ macro to process the image data, identify IR-RF emitting grains and obtain single-grain IR-RF signal curves. For subsequent analysis, we apply the statistical programming environment R and the package Luminescence. In the second part of the article, we test SR IR-RF on two K-feldspar samples. One sample was irradiated artificially; the other sample received a natural dose. The artificially irradiated sample renders results indistinguishable from conventional IR-RF measurements with the photomultiplier tube. The natural sample seems to overestimate the expected dose by ca. 50 % on average. However, it also shows a lower dose component, resulting in ages consistent with the same sample's quartz fraction. Our experiments also revealed an unstable signal background due to our cameras' degenerated cooling system. Besides this technical issue specific to the system we used, SR IR-RF is ready for application. Our contribution provides guidance and software tools for methodological and applied luminescence (dating) studies on single-grain feldspars using radiofluorescence.

Author(s):  
Dirk Mittelstraß ◽  
Sebastian Kreutzer

Abstract. The success of luminescence dating as a chronological tool in Quaternary science builds upon innovative methodological approaches, providing new insights into past landscapes. Infrared radiofluorescence (IR-RF) on K-feldspar is such an innovative method already introduced two decades ago. IR-RF promises considerable extended temporal range and a simple measurement protocol, with more dating applications published recently. To date, all applications use multi-grain measurements. Herein, we take the next step by enabling IR-RF measurements on a single grain level. Our contribution introduces spatially resolved infrared radiofluorescence (SR IR-RF) on K-feldspars and intends to make SR IR-RF broadly accessible as a geochronological tool. In the first part of the manuscript, we detail equipment, CCD camera settings and software needed to perform and analyse SR IR-RF measurements. We use a newly developed ImageJ macro to process the image data, identify IR-RF emitting grains and obtain single-grain IR-RF signal curves. For subsequent analysis, we apply the statistical programming environment R and the package Luminescence. In the second part of the manuscript, we test SR IR-RF on two K-feldspar samples. One sample was irradiated artificially; the other sample received a natural dose. The artificially irradiated sample renders results, indistinguishable from conventional IR-RF measurements with the photomultiplier tube. The natural sample seems to overestimate the expected dose by ca 50 % on average. However, it also shows a lower dose component resulting in ages consistent with the same sample's quartz fraction. Our experiments also revealed an unstable signal background due to our cameras' degenerated cooling system. Besides this technical issue specific to the system we used, SR IR-RF is ready for application. Our contribution provides guidance and software tools for methodological and applied luminescence(-dating) studies on single grain feldspars using radiofluorescence.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


2007 ◽  
Vol 19 (5) ◽  
pp. 519-523 ◽  
Author(s):  
Masayasu Suzuki ◽  
◽  
Toyohiro Ohshima ◽  
Shintaro Hane ◽  
Yasunori Iribe ◽  
...  

Evaluating cell activity and functions in different-sized cell chambers requires multiscale sensing. We have been developing multiscale biosensing applied from 10 µm to 1 mm. We measured mouse IgG in micro wells using a high-resolution two-dimensional surface plasmon resonance (SPR) imaging affinity sensor. This sensor uses high refractive optics, a 1X to 7X microscopic lens, and a cooled CCD camera. The micro-well array was prepared with a PDMS film on gold sensor film. Protein A immobilized on sensor film was used for IgG recognition. SPR sensitivity was dramatically decreased with 10 and 8.5 µm microwells. To improve sensor sensitivity, we optimized the sensor’s measurement angle and exposure time, enabling mouse IgG to be detected in wells of 1 mm, 30 µm, and 10 µm using the same 2D-SPR imaging sensor and measurement protocol. These results show the feasibility of multiscale biosensing use in antibody production in a micro well or a cell chamber.


Cryogenics ◽  
1990 ◽  
Vol 30 (5) ◽  
pp. 397-400 ◽  
Author(s):  
J. Mannhart ◽  
R. Gross ◽  
R.P. Huebener ◽  
P. Chaudhari ◽  
D. Dlmos ◽  
...  

1989 ◽  
Vol 134 ◽  
pp. 452-453
Author(s):  
J.B. Hutchings ◽  
S.G. Neff ◽  
J.H. van Gorkom

We present results of observations of the double-nucleus galaxy Markarian 266 (NGC 5256) from 3 principal sources. These are 1:CCD imaging with the Canada-France-Hawaii telescope in broad and narrow bands. These indicate that the galaxy has extended, complex, faint outer plumes which indicate that a recent merger has occurred. The narrow-band images reveal remarkable knotty structure of the [O III] emitting gas, extending over the whole central part of the galaxy. This is not seen in Hα (see figure 1).2:21cm imaging with the VLA, covering velocity space near that of the optical nuclei. The continuum image reveals resolved triple structure, with the two outer peaks coincident with the optical nuclei. The 21cm velocity profiles indicate the presence of considerable H I absorption near the optical emission line velocities.3:Spatially resolved optical spectroscopy with the DAO 1.8m telescope. These data reveal the details of the [O III] velocity field and some of the physical parameters of the gas. The complexity and extended nature of the gas explains some conflicting redshift measurements in the literature. Together with the imaging data, we derive estimates of nuclear reddening and luminosity.


1991 ◽  
Vol 9 (1) ◽  
pp. 158-159 ◽  
Author(s):  
B. D. Carter ◽  
M. C. B. Ashley

AbstractWe describe the application of Peltier effect cooling to charge coupled device (CCD) detectors. We are developing this technique to produce a CCD camera which requires low maintenance, yet has sufficiently small dark-current for long exposure imaging. This camera will be used in an automated imaging telescope at Siding Spring Observatory. The design principles used to maximise cooling of the detector, and hence minimise dark-current, are discussed. A small dark-current can be obtained only if great care is taken to reduce or eliminate convective, conductive and radiative heating of the chip. In addition, a path of high thermal conductivity must be provided for the heat removed from the CCD. A recent laboratory test of our cooling system demonstrates that careful design can lead to sufficiently low CCD dark-current for many astronomical applications.


Author(s):  
Akihiro Tagawa ◽  
Masashi Ueda ◽  
Takuya Yamashita

In-service inspection (ISI) is carried out to confirm the integrity of the main components of the Fast Breeder Reactor (FBR) “MONJU”. The weld-joints are examined by using an inspection device which has a glass fiber scope for visual examination and a horizontally polarized shear (SH) wave electromagnetic acoustic transducer (EMAT) for volumetric testing. The ambient temperature during the inspection is 200°C and the irradiation field is 10 Sv/hr. A new inspection device has been developed in order to improve the visual test performance, volumetric test performance and controllability of the inspection device reflecting the experience of the original test. In this paper, detail of the new inspection device and the test results of sensors such as the CCD camera, EMAT and bead sensor are reported. The paper also reports on the CCD camera cooling system and other components.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33 ◽  
Author(s):  
George K. Adam ◽  
Panagiotis A. Kontaxis ◽  
Lambros T. Doulos ◽  
Evangelos-Nikolaos D. Madias ◽  
Constantinos A. Bouroussis ◽  
...  

Although with the advent of the LEDs the energy consumption in buildings can be reduced by 50%, there exists a potential for energy savings due to lighting controls. Moreover, lighting controls can ensure that the near zero energy requirements by EU can be achieved for near zero energy buildings (nZEBs). For this reason, more sophisticated lighting controls must be proposed in order to take full advantage of LEDs and their flexibility concerning dimming. This paper proposes the architecture of an embedded computer camera controller for monitoring and management of image data, which is applied in various control cases, and particularly in digitally controlled lighting devices. The proposed system deals with real-time monitoring and management of a GigE camera input. An in-house developed algorithm using MATLAB enables the identification of areas in luminance values. The embedded microcontroller is part of a complete lighting control system with an imaging sensor in order to measure and control the illumination of several working areas of a room. The power consumption of the proposed lighting system was measured and was compared with the power consumption of a typical photosensor. The functional performance and operation of the proposed camera control system architecture was evaluated based upon a BeagleBone Black microcontroller board.


2015 ◽  
Vol 1 (1) ◽  
pp. 265-269
Author(s):  
M. Oelschlägel ◽  
T. Meyer ◽  
S. B. Sobottka ◽  
M. Kirsch ◽  
G. Schackert ◽  
...  

AbstractIntraoperative Optical Imaging (IOI) is a neuro-imaging technique that allows the visualization of changes in optical properties of the brain cortex. Recent developments enhanced the method regarding the robustness under intraoperative conditions. However, the necessity of additional hardware still limits the use in the operating room (OR). Since modern surgical microscopes are potentially equipped with all required hardware for imaging, we investigated the possible use of such standard RGB camera for IOI. Measurements were performed on eight patients. Changes in optical properties of the cortical surface were acquired with a monochrome CCD camera (AxioCam MRm) and simultaneously with a standard RGB camera (Trio 610). Maps of cortical activity were calculated from the image data and the quality of these maps was assessed with a spatial signal-to-noise ratio. Activity maps calculated from AxioCam MRm data showed highest SNR in six out of eight patients. In two patients the activity map calculated from Trio 610 red channel performed best overall. The Trio 610 maps calculated from red channel data performed best in three out of eight cases like the activity maps calculated from green channel data, whereas the activity map calculated from blue channel data performed best in only two cases. If the color channel with the highest SNR is chosen in each patient for comparison to AxioCam MRm, the median of the SNR (SNRAxioCam/SNRBestColorChannel) is 84 % (Quartile 1 (Q1): 78 %, Quartile 3 (Q3): 99%). Results reveal that the integration of the Intraoperative Optical Imaging method into the OR and surgical workflow can be further improved by using RGB camera equipment. A robust identification of somato-sensory areas seems possible. Due to the gain of information from different wavelength bands the need for intelligent evaluation algorithms is increased and should therefore be topic of future research.


Sign in / Sign up

Export Citation Format

Share Document