scholarly journals Fernerkundung und GIS bei Umweltmonitoring und Umweltmanagement

1997 ◽  
Vol 52 (1) ◽  
pp. 5-10
Author(s):  
M. Ehlers

Abstract. Remote sensing image analysis Systems and geographie in formation Systems (GIS) show great promise for the Integra tion of a wide variety of spatial information as a support to en vironmental monitoring and managementtasks. Current and future remote sensing programs are based on a variety of sensors that will provide timely and repetitive multisensor earth Observation data on a global scale. GIS offer efficient tools for handling, manipulating, analyzing and presenting spatial data that are required for environmental ly sound deci sion making. To combine the power of both spatial techno logies, however, efficient synergistic processing techniques have to be developed to cope with large multisensor image datasets and to automatically extract information for environ mental GIS applications. These efforts have to be put in a broader perspective of an evolving discipline Geoinformatics as one component of a new and innovative interdisciplinary approach for academic education. One example of this approach is the new academic program Environmental Sciences at the University of Vechta.

Author(s):  
G. Vosselman ◽  
S. J. Oude Elberink ◽  
M. Y. Yang

<p><strong>Abstract.</strong> The ISPRS Geospatial Week 2019 is a combination of 13 workshops organised by 30 ISPRS Working Groups active in areas of interest of ISPRS. The Geospatial Week 2019 is held from 10–14 June 2019, and is convened by the University of Twente acting as local organiser. The Geospatial Week 2019 is the fourth edition, after Antalya Turkey in 2013, La Grande Motte France in 2015 and Wuhan China in 2017.</p><p>The following 13 workshops provide excellent opportunities to discuss the latest developments in the fields of sensors, photogrammetry, remote sensing, and spatial information sciences:</p> <ul> <li>C3M&amp;amp;GBD – Collaborative Crowdsourced Cloud Mapping and Geospatial Big Data</li> <li>CHGCS – Cryosphere and Hydrosphere for Global Change Studies</li> <li>EuroCow-M3DMaN – Joint European Calibration and Orientation Workshop and Workshop onMulti-sensor systems for 3D Mapping and Navigation</li> <li>HyperMLPA – Hyperspectral Sensing meets Machine Learning and Pattern Analysis</li> <li>Indoor3D</li> <li>ISSDQ – International Symposium on Spatial Data Quality</li> <li>IWIDF – International Workshop on Image and Data Fusion</li> <li>Laser Scanning</li> <li>PRSM – Planetary Remote Sensing and Mapping</li> <li>SarCon – Advances in SAR: Constellations, Signal processing, and Applications</li> <li>Semantics3D – Semantic Scene Analysis and 3D Reconstruction from Images and ImageSequences</li> <li>SmartGeoApps – Advanced Geospatial Applications for Smart Cities and Regions</li> <li>UAV-g – Unmanned Aerial Vehicles in Geomatics</li> </ul> <p>Many of the workshops are part of well-established series of workshops convened in the past. They cover topics like UAV photogrammetry, laser scanning, spatial data quality, scene understanding, hyperspectral imaging, and crowd sourcing and collaborative mapping with applications ranging from indoor mapping and smart cities to global cryosphere and hydrosphere studies and planetary mapping.</p><p>In total 143 full papers and 357 extended abstracts were submitted by authors from 63 countries. 1250 reviews have been delivered by 295 reviewers. A total of 81 full papers have been accepted for the volume IV-2/W5 of the International Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Another 289 papers are published in volume XLII-2/W13 of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.</p><p>The editors would like to thank all contributing authors, reviewers and all workshop organizers for their role in preparing and organizing the Geospatial Week 2019. Thanks to their contributions, we can offer an excessive and varying collection in the Annals and the Archives.</p><p>We hope you enjoy reading the proceedings.</p><p>George Vosselman, Geospatial Week Director 2019, General Chair<br /> Sander Oude Elberink, Programme Chair<br /> Michael Ying Yang, Programme Chair</p>


2020 ◽  
Vol 12 (11) ◽  
pp. 1770 ◽  
Author(s):  
Ronald Estoque

The formulation of the 17 sustainable development goals (SDGs) was a major leap forward in humankind’s quest for a sustainable future, which likely began in the 17th century, when declining forest resources in Europe led to proposals for the re-establishment and conservation of forests, a strategy that embodies the great idea that the current generation bears responsibility for future generations. Global progress toward SDG fulfillment is monitored by 231 unique social-ecological indicators spread across 169 targets, and remote sensing (RS) provides Earth observation data, directly or indirectly, for 30 (18%) of these indicators. Unfortunately, the UN Global Sustainable Development Report 2019—The Future is Now: Science for Achieving Sustainable Development concluded that, despite initial efforts, the world is not yet on track for achieving most of the SDG targets. Meanwhile, through the EO4SDG initiative by the Group on Earth Observations, the full potential of RS for SDG monitoring is now being explored at a global scale. As of April 2020, preliminary statistical data were available for 21 (70%) of the 30 RS-based SDG indicators, according to the Global SDG Indicators Database. Ten (33%) of the RS-based SDG indicators have also been included in the SDG Index and Dashboards found in the Sustainable Development Report 2019—Transformations to Achieve the Sustainable Development Goals. These statistics, however, do not necessarily reflect the actual status and availability of raw and processed geospatial data for the RS-based indicators, which remains an important issue. Nevertheless, various initiatives have been started to address the need for open access data. RS data can also help in the development of other potentially relevant complementary indicators or sub-indicators. By doing so, they can help meet one of the current challenges of SDG monitoring, which is how best to operationalize the SDG indicators.


2015 ◽  
Vol 10 (2) ◽  
pp. 225-230
Author(s):  
Sikander Nawaz Khan ◽  

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information on natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provides precise and accurate locations and other related information like speed, track, direction and distance of target objects to emergency responders.Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing a vital role in disaster management.Early in Geographic Information System (GIS) was used to collect, arrange, and map the spatial information, but now it has the capability to analyze spatial data. This analytical ability of GIS is the main cause of its adoption by different emergency service providers like the police and ambulance service.The full potential of these so called 3S technologies cannot be used alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases, including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.


Author(s):  
F. Tsai ◽  
L.-C. Chen

During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.


2010 ◽  
Vol 3 (3) ◽  
pp. 2651-2680 ◽  
Author(s):  
K. H. Lee ◽  
Y. J. Kim

Abstract. Satellite-based aerosol observation is a useful tool for the estimation of microphysical and optical characteristics of aerosol during more than three decades. Until now, a lot of satellite remote sensing techniques have been developed for aerosol detection. In East Asian region, the role of satellite observation is quite important because aerosols originating from natural and man-made pollution in this region have been recognized as an important source for regional and global scale air pollution. However, it is still difficult to retrieve aerosol over land because of the complexity of the surface reflection and complex aerosol composition, in particular, aerosol absorption. In this study, aerosol retrievals using Look-up Table (LUT) based method was applied to MODerate Resolution Imaging Spectroradiometer (MODIS) Level 1 (L1) calibrated reflectance data to retrieve aerosol optical thickness (AOT) over East Asia. Three case studies show how the methodology works to identify those differences to obtain a better AOT retrieval. The comparison between the MODIS and Aerosol Robotic Network (AERONET) shows better results when the suggested methodology using the cluster based LUTs is applied (linear slope=0.94, R=0.92) than when operational MODIS aerosol products are used (linear slope=0.78, R=0.87). In conclusion, the suggested methodology is shown to work well with aerosol models acquired by statistical clustering the observation data in East Asia.


Author(s):  
P.K. Paul ◽  
P. S. Aithal ◽  
A. Bhuimali ◽  
K.S. Tiwary ◽  
R. Saavedra ◽  
...  

Geo Informatics is an interdisciplinary field responsible for spatial information related activities. Geo Informatics is close to the Geo Information Science, Geo Information System, Remote Sensing, etc. Geo Informatics is a combination of Geo Science and Information Science and here different kinds of IT and Computing tools are being used such as Database Technology, Network Technology, Web Technology, Multimedia Technology, etc in the spatial data management. Remote Sensing is considered as a component of Geo Information Science dedicated in gathering of information on the different types of objects without physical content and applicable in different areas of the geography, survey of land and different type of geo related areas viz. Hydrology, Ecology, Meteorology, Oceanography and Geology, etc. The term remote sensing is also called as GIS & RS due to their relationship and their importance. The applications of the IT in Geography and allied areas are called as Geo Informatics or Geo Information Science. Similarly, the applications and utilization of IT, Information Science and Computing in Environment and allied areas are known as Environmental Informatics or Environmental Information Science. The GIS and Remote Sensing applications in the environment and ecological areas are increasing rapidly and it includes various existing and emerging applications. This paper talks about the applications of the GIS and RS in Environmental Applications and Management.


2020 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Mohammed Taleb Obaidat ◽  
Nour Abu Shuaib

The aim of this study were to determine of best areas to construct new photovoltaic farms in Jordan using four main factors that majorly affect the feasibility of these farms which is solar radiation yearly sum on the land, aspect of the land, height of the land and the presence of electricity lines near the land. Further, to represent main current projects in Geographic Information Systems (GIS) software. The outcome results will produce a map of Jordan Suitability areas to construct new Photovoltaic farms by using GIS software and many calculations with remote sensing techniques and represent some of the current main photovoltaic projectson it as a spatial data with their names and their capacities. The new methodology will open the door for numerous GIS applications in the area of Solar Energy. 


2020 ◽  
Vol 12 (15) ◽  
pp. 2495 ◽  
Author(s):  
Ava Vali ◽  
Sara Comai ◽  
Matteo Matteucci

Lately, with deep learning outpacing the other machine learning techniques in classifying images, we have witnessed a growing interest of the remote sensing community in employing these techniques for the land use and land cover classification based on multispectral and hyperspectral images; the number of related publications almost doubling each year since 2015 is an attest to that. The advances in remote sensing technologies, hence the fast-growing volume of timely data available at the global scale, offer new opportunities for a variety of applications. Deep learning being significantly successful in dealing with Big Data, seems to be a great candidate for exploiting the potentials of such complex massive data. However, there are some challenges related to the ground-truth, resolution, and the nature of data that strongly impact the performance of classification. In this paper, we review the use of deep learning in land use and land cover classification based on multispectral and hyperspectral images and we introduce the available data sources and datasets used by literature studies; we provide the readers with a framework to interpret the-state-of-the-art of deep learning in this context and offer a platform to approach methodologies, data, and challenges of the field.


Author(s):  
G. Vosselman ◽  
S. J. Oude Elberink ◽  
M. Y. Yang

<p><strong>Abstract.</strong> The ISPRS Geospatial Week 2019 is a combination of 13 workshops organised by 30 ISPRS Working Groups active in areas of interest of ISPRS. The Geospatial Week 2019 is held from 10–14 June 2019, and is convened by the University of Twente acting as local organiser. The Geospatial Week 2019 is the fourth edition, after Antalya Turkey in 2013, La Grande Motte France in 2015 and Wuhan China in 2017.</p><p>The following 13 workshops provide excellent opportunities to discuss the latest developments in the fields of sensors, photogrammetry, remote sensing, and spatial information sciences:</p> <ul> <li>C3M&amp;amp;GBD – Collaborative Crowdsourced Cloud Mapping and Geospatial Big Data</li> <li>CHGCS – Cryosphere and Hydrosphere for Global Change Studies</li> <li>EuroCow-M3DMaN – Joint European Calibration and Orientation Workshop and Workshop onMulti-sensor systems for 3D Mapping and Navigation</li> <li>HyperMLPA – Hyperspectral Sensing meets Machine Learning and Pattern Analysis</li> <li>Indoor3D</li> <li>ISSDQ – International Symposium on Spatial Data Quality</li> <li>IWIDF – International Workshop on Image and Data Fusion</li> <li>Laser Scanning</li> <li>PRSM – Planetary Remote Sensing and Mapping</li> <li>SarCon – Advances in SAR: Constellations, Signal processing, and Applications</li> <li>Semantics3D – Semantic Scene Analysis and 3D Reconstruction from Images and ImageSequences</li> <li>SmartGeoApps – Advanced Geospatial Applications for Smart Cities and Regions</li> <li>UAV-g – Unmanned Aerial Vehicles in Geomatics</li> </ul> <p>Many of the workshops are part of well-established series of workshops convened in the past. They cover topics like UAV photogrammetry, laser scanning, spatial data quality, scene understanding, hyperspectral imaging, and crowd sourcing and collaborative mapping with applications ranging from indoor mapping and smart cities to global cryosphere and hydrosphere studies and planetary mapping.</p><p>In total 143 full papers and 357 extended abstracts were submitted by authors from 63 countries. 1250 reviews have been delivered by 295 reviewers. A total of 81 full papers have been accepted for the volume IV-2/W5 of the International Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Another 289 papers are published in volume XLII-2/W13 of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.</p><p>The editors would like to thank all contributing authors, reviewers and all workshop organizers for their role in preparing and organizing the Geospatial Week 2019. Thanks to their contributions, we can offer an excessive and varying collection in the Annals and the Archives.</p><p>We hope you enjoy reading the proceedings.</p><p>George Vosselman, Geospatial Week Director 2019, General Chair<br> Sander Oude Elberink, Programme Chair<br> Michael Ying Yang, Programme Chair</p>


Author(s):  
Željko Bačić

Development of Earth observation technologies from Space and air which are enabling intensive use of spatial information and Spatial data infrastructure which regulates usage of spatial information, respectively also concepts like Internet of things, Smart cities, Precise farming, Intelligent transportation and similar, impose on academic society necessity to redefine competences which students of bright variety of study programmes must overmaster during their study. In the frame of European Union Erasmus+ programme is, among other, initated two projects which goal is to solve this global challenge. The EO4GEO project aim is to define Earth observation from Space and air competences on the European level, while the BESTSDI project aim is to define Spatial data infrastructure competences on the regional level. Content of those projects, solution approach obstinance, methodology and their goals, respectively also expected effects on study programmes are shown in this paper.


Sign in / Sign up

Export Citation Format

Share Document