scholarly journals First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments

2021 ◽  
Vol 10 (1) ◽  
pp. 65-79
Author(s):  
Anne-Karin Cooke ◽  
Cédric Champollion ◽  
Nicolas Le Moigne

Abstract. Quantum gravimeters are a promising new development allowing for continuous absolute gravity monitoring while remaining user-friendly and transportable. In this study, we present experiments carried out to assess the capacity of the AQG#B01 in view of future deployment as a field gravimeter for hydrogeophysical applications. The AQG#B01 is the field version follow-up of the AQG#A01 portable absolute quantum gravimeter developed by the French quantum sensor company Muquans. We assess the instrument's performance in terms of stability (absence of instrumental drift) and sensitivity in relation to other gravimeters. No significant instrumental drift was observed over several weeks of measurement. We discuss the observations concerning the accuracy of the AQG#B01 in comparison with a state-of-the-art absolute gravimeter (Micro-g-LaCoste, FG5#228). We report the repeatability to be better than 50 nm s−2. This study furthermore investigates whether changes in instrument tilt and external temperature and a combination of both, which are likely to occur during field campaigns, influence the measurement of gravitational attraction. We repeatedly tested external temperatures between 20 and 30 ∘C and did not find any significant effect. As an example of a geophysical signal, a 100 nm s−2 gravity change is detected with the AQG#B01 after a rainfall event at the Larzac geodetic observatory (southern France). The data agreed with the gravity changes measured with a superconducting relative gravimeter (GWR, iGrav#002) and the expected gravity change simulated as an infinite Bouguer slab approximation. We report 2 weeks of stable operation under semi-terrain conditions in a garage without temperature-control. We close with operational recommendations for potential users and discuss specific possible future field applications. While not claiming completeness, we nevertheless present the first characterization of a quantum gravimeter carried out by future users. Selected criteria for the assessment of its suitability in field applications have been investigated and are complemented with a discussion of further necessary experiments.

2020 ◽  
Author(s):  
Anne-Karin Cooke ◽  
Cédric Champollion ◽  
Nicolas Le Moigne

Abstract. Quantum gravimeters are a promising new development allowing for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. In this study, we present experiments carried out to assess the capacity of the AQG#B01 in view of future deployment as a field gravimeter for hydro-geophysical applications. The AQG#B01 is the field version follow-up of the AQG#A01 portable absolute quantum gravimeter developed by MuQuans. We assess the instrument's performance in terms of stability (absence of instrumental drift), sensitivity in relation to other gravimeters, and hydrogeological mass changes. We discuss the observations concerning the accuracy of the AQG#B01 in comparison with a state-of-the-art absolute gravimeter (Micro-g-LaCoste, FG5#228). Repeatability is tested by instrument displacement between close-by measurement positions. We report the repeatability to be better than 50 nm s−2. No significant instrumental drift was observed over several weeks of measurement. This study furthermore investigates whether changes of instrument tilt and external temperature and combination of both, which are likely to occur during field campaigns, influence the measurement of gravitational attraction. We repeatedly tested external temperatures between 20 and 30 °C and did not find any significant effect. As an example of a geophysical signal, a 100 nm s−2 gravity change is detected with the AQG#B01 after a rainfall event at the Larzac geodetic observatory (Southern France). The data agreed with the gravity changes measured with a superconducting relative gravimeter (GWR, iGrav#002) and the expected gravity change simulated as an infinite Bouguer slab approximation. We close with operational recommendations for potential users and discuss specific possible future field applications. While not claiming completeness, we nevertheless present the first characterisation of a quantum gravimeter carried out by future users. Crucial criteria for the assessment of its suitability in field applications have been investigated and are complemented with a discussion of further necessary experiments.


2020 ◽  
Author(s):  
Cédric Champollion ◽  
Anne-Karin Cooke ◽  
Nicolas Le Moigne

<p>The recent advancements in gravity quantum sensors promise maintenance-free, easy to use, continuous and accurate monitoring devices. This technological breakthrough in gravity instrumentation offers new possibilities for both laboratory and field experiments in different geosciences applications. These new gravity quantum sensors allow e.g. for the monitoring of transient processes in volcanology, plate tectonics (slow slip events) or hydro-geology (pumping tests).</p><p>The first commercial field quantum gravimeters are nowadays available (AQGB, Muquans TM). The AQG#B01 is actually under validation. It is tested and compared with a superconducting gravimeter (GWR iGrav#002 and an absolute ballistic gravimeter (MG-L FG5#228) in the French Larzac Observatory () during more than 1 month. A first small (50 nm/s²) transient gravity variation caused by hydro-geological charge has been recorded by both the quantum and superconducting gravimeter.</p><p>Additionally its sensitivity to environmental noise is characterized by its Allan variance. Absolute ballistic comparison during one month allows to estimate a maximum potential drift. Sensitivity tests on instrument tilts and orientation have been done. In order to evaluate the AQG-B as a field sensor, sensitivity to external temperature changes have been tested in the range 10°C-30°C. All the tests allow a clear characterization of the AQG-B for future field experimentation.</p><p>AQG#B01 development has been funded is the frame of the grant “investissement d’avenir” EquipEx RESIF-CORE.</p>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1338
Author(s):  
Morgan E. Meissner ◽  
Emily J. Julik ◽  
Jonathan P. Badalamenti ◽  
William G. Arndt ◽  
Lauren J. Mills ◽  
...  

Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.


2014 ◽  
Vol 50 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Valentin Wagner ◽  
Peter Bayer ◽  
Gerhard Bisch ◽  
Markus Kübert ◽  
Philipp Blum

Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 264 ◽  
Author(s):  
Gerald Lohmann

The ongoing world-wide increase of installed photovoltaic (PV) power attracts notice to weather-induced PV power output variability. Understanding the underlying spatiotemporal volatility of solar radiation is essential to the successful outlining and stable operation of future power grids. This paper concisely reviews recent advances in the characterization of irradiance variability, with an emphasis on small spatial and temporal scales (respectively less than about 10 km and 1 min), for which comprehensive data sets have recently become available. Special attention is given to studies dealing with the quantification of variability using such unique data, the analysis and modeling of spatial smoothing, and the evaluation of temporal averaging.


2015 ◽  
Vol 3 (4) ◽  
pp. 609-618 ◽  
Author(s):  
Azza M. Abdel-fattah ◽  
EL-Shahat H. A. Nashy ◽  
El-Tahir A. Sabiel ◽  
Manal M. Hussien ◽  
Ahmed S. Attia

Two field experiments had been conducted in Nubaria sandy soil, Behaira Governate, Egypt to show the effect of keratinase enzyme produced by the novel microbial isolate (Cyberlindnera fabianii NRC3 Aza) on plants.The trials had been conducted in the two successive summer seasons (2011/2012 and 2012/2013) to show the effect of keratinase enzyme from degraded feather–waste on the morphology and chemical composition of peas pods (Pisumsativum L.)–family Fabaceae (Leguminasae). In 2011/2012 season, only the chemical analysis of the dried powdered beads was studied. In 2012/2013 season, the morphological studies of the yield were considered beside the chemical ones. The results depicted significant effects of the sprayed enzyme (keratinase) on peas as plant growth promoting agent (PGPA), compared with the blank (sprayed with water). Electrophoreses and amino acid analysis were carried out for the characterization of the partial pure keratinase enzyme. Int J Appl Sci Biotechnol, Vol 3(4): 609-618


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Ezequiel D. Antokoletz ◽  
Hartmut Wziontek ◽  
Claudia N. Tocho ◽  
Reinhard Falk

AbstractThe Argentinean–German Geodetic Observatory (AGGO) is a fundamental geodetic observatory located close to the city of La Plata, Argentina. Two high-precision gravity meters are installed at AGGO: the superconducting gravimeter SG038, which is in operation since December 2015, and the absolute gravimeter FG5-227, which has provided absolute gravity measurements since January 2018. By co-location of gravity observations from both meters between January 2018 and March 2019, calibration factor and instrumental drift of the SG038 were determined. The calibration factor of the SG038 was estimated by different strategies: from tidal models, dedicated absolute gravity measurements over several days and a joint approach (including the determination of the instrumental drift) using all available absolute gravity data. The final calibration factor differs from the determination at the previous station, the transportable integrated geodetic observatory, in Concepcion, Chile, by only 0.7‰, which does not imply a significant change. From the combined approach also the mean absolute level of the SG was determined, allowing to predict absolute gravity values from the SG at any time based on a repeatability of $$12\,\hbox {nm}/\hbox {s}^{2}$$ 12 nm / s 2 for the FG5-227 at AGGO. Such a continuous gravity reference function provides the basis for a comparison site for absolute gravimeters in the frame of the international gravity reference frame for South America and the Caribbean. However, it requires the assessment of the total error budget of the FG5-227, including the link to the international comparisons, which will be subject of future efforts.


2015 ◽  
Vol 10 (1) ◽  
pp. 1934578X1501000
Author(s):  
Amadeo Gironés-Vilaplana ◽  
Diego A. Moreno ◽  
Cristina García-Viguera

“Pacharán” is an aniseed liquor-based beverage made with sloe berry ( Prunus spinosa L.) that has been produced in northern Spain. On the other hand, maqui berry ( Aristotelia chilensis) is a common edible berry from Chile, and currently under study because of its multiple beneficial effects on health. The aim of this work was to design a new aniseed liquor-based beverage with maqui berry, as an industrial alternative to a traditional alcoholic product with bioactive berries. The characterization of its composition, compared with the traditional “Pacharán”, and its evolution during maceration (6 and 12 months) showed that the new maqui liquor had significantly-higher anthocyanin retention over time. More studies on the organoleptic properties and bioactivity are underway.


Sign in / Sign up

Export Citation Format

Share Document