viral mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Anupriya Aggarwal ◽  
Alberto Ospina Stella ◽  
Catherine C. Henry ◽  
Kedar Narayan ◽  
Stuart G. Turville

F-Actin remodeling is important for the spread of HIV via cell–cell contacts; however, the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell–cell contact, provided Cdc42 and IQGAP1 were present. From these observations, we conclude that a proportion out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, the maturation of cell–cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5305
Author(s):  
Rita F. Cunha ◽  
Sandra Simões ◽  
Manuela Carvalheiro ◽  
José M. Azevedo Pereira ◽  
Quirina Costa ◽  
...  

When the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved. In this review, the most recent phase III clinical studies and other research therapies as advanced antiretroviral nanodelivery systems will be here discussed. Although the combined antiretroviral therapy is effective in reducing viral loading to undetectable levels, it also presents some disadvantages, such as usual side effects, high frequency of administration, and the possibility of drug resistance. Therefore, several new drugs, delivery systems, and vaccines have been tested in pre-clinical and clinical trials. Regarding drug delivery, an attempt to change the route of administration of some conventional antiretrovirals has proven to be successful and surpassed some issues related to patient compliance. Nanotechnology has brought a new approach to overcoming certain obstacles of formulation design including drug solubility and biodistribution. Overall, the encapsulation of antiretroviral drugs into nanosystems has shown improved drug release and pharmacokinetic profile.


Author(s):  
Ajayi AAL ◽  

The pharmacology of anti-SARS-CoV-2 drugs, Molnupiravir (M) and repurposed Ivermectin (IV) were compared. The IC50 for the inhibition of viral replication were 0.3μM for M and 2.8μM for IV. Both drugs have good oral absorption, with M achieving peak plasma concentrations by 2 hours and IV by 5 hours. The plasma half life were 7 hours for M and 81-91 hours for IV. M inhibits viral replication inducing viral mutagenesis in RdRp, causing viral error catastrophe and viral extinction. IV affects viral cell entry, nuclear transport and inhibits replication via RdRp. IV has additional effect to suppress cytokine production through STAT-3 inhibition. M is a more potent antiviral drug and IV has a longer residence in the body. Their effects on RdRp and cytokine inhibition are potentially complimentary for anti-COVID-19 activity. Both IV and M should be compared in randomized controlled clinical trials, and the possibility of their combination for anti-SARS-CoV-2 antiviral actions, explored further.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1338
Author(s):  
Morgan E. Meissner ◽  
Emily J. Julik ◽  
Jonathan P. Badalamenti ◽  
William G. Arndt ◽  
Lauren J. Mills ◽  
...  

Human immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis. We also present the development of a user-friendly Galaxy workflow for the bioinformatic analyses of sequencing data generated using the MDS technique, designed to improve replicability and accessibility to molecular virologists. This adapted MDS technique and analysis pipeline were validated by comparisons with previously published analyses of the frequency and spectra of mutations in HIV-1 and HIV-2 and is readily expandable to studies of viral mutation across the genomes of both viruses. Using this novel sequencing pipeline, we observed that the background error rate was reduced 100-fold over standard Illumina error rates, and 10-fold over traditional unique molecular identifier (UMI)-based sequencing. This technical advancement will allow for the exploration of novel and previously unrecognized sources of viral mutagenesis in both HIV-1 and HIV-2, which will expand our understanding of retroviral diversity and evolution.


Author(s):  
Rui Xiong ◽  
Leike Zhang ◽  
Shiliang Li ◽  
Yuan Sun ◽  
Minyi Ding ◽  
...  

AbstractEmerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of coronavirus SARS-CoV-2. Existing direct-acting antiviral (DAA) drugs cannot be applied immediately to new viruses because of virus-specificity, and the development of new DAA drugs from the beginning is not timely for outbreaks. Thus, host-targeting antiviral (HTA) drugs have many advantages to fight against a broad spectrum of viruses, by blocking the viral replication and overcoming the potential viral mutagenesis simultaneously. Herein, we identified two potent inhibitors of DHODH, S312 and S416, with favorable drug-like and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus (H1N1, H3N2, H9N2), Zika virus, Ebola virus, and particularly against the recent novel coronavirus SARS-CoV-2. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knocking-out cells. We also proposed the drug combination of DAA and HTA was a promising strategy for anti-virus treatment and proved that S312 showed more advantageous than Oseltamivir to treat advanced influenza diseases in severely infected animals. Notably, S416 is reported to be the most potent inhibitor with an EC50 of 17nM and SI value >5882 in SARS-CoV-2-infected cells so far. This work demonstrates that both our self-designed candidates and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-repression may have clinical potentials not only to influenza but also to COVID-19 circulating worldwide, no matter such viruses mutate or not.


2019 ◽  
Author(s):  
Anupriya Aggarwal ◽  
Alberto Ospina Stella ◽  
Catherine Henry ◽  
Kedar Narayan ◽  
Stuart G. Turville

AbstractF-Actin remodelling is important for the spread of HIV via cell-cell contacts, yet the mechanisms by which HIV corrupts the actin cytoskeleton are poorly understood. Through live cell imaging and focused ion beam scanning electron microscopy (FIB-SEM), we observed F-Actin structures that exhibit strong positive curvature to be enriched for HIV buds. Virion proteomics, gene silencing, and viral mutagenesis supported a Cdc42-IQGAP1-Arp2/3 pathway as the primary intersection of HIV budding, membrane curvature and F-Actin regulation. Whilst HIV egress activated the Cdc42-Arp2/3 filopodial pathway, this came at the expense of cell-free viral release. Importantly, release could be rescued by cell-cell contact, providing Cdc42 and IQGAP1 were present. From these observations we conclude that out-going HIV has corrupted a central F-Actin node that enables initial coupling of HIV buds to cortical F-Actin to place HIV at the leading cell edge. Whilst this initially prevents particle release, maturation of cell-cell contacts signals back to this F-Actin node to enable viral release & subsequent infection of the contacting cell.


2019 ◽  
Vol 56 (6) ◽  
pp. 950-958 ◽  
Author(s):  
Laura J. Janke ◽  
Charles G. Mullighan ◽  
Jinjun Dang ◽  
Jerold E. Rehg

In humans and in mouse models, precursor B-cell lymphoblastic leukemia (B-ALL)/lymphoblastic lymphoma (B-LBL) can be classified as either the pro-B or pre-B subtype. This is based on the expression of antigens associated with the pro-B and pre-B stages of B-cell development. Antigenic markers can be detected by flow cytometry or immunohistochemistry (IHC), but no comparison of results from these techniques has been reported for murine B-ALL/LBL. In our analysis of 30 cases induced by chemical or viral mutagenesis on a WT or Pax5+/–background, 18 (60%) were diagnosed as pro-B by both flow cytometry and IHC. Discordant results were found for 12 (40%); 6 were designated pro-B by IHC and pre-B by flow cytometry and the reverse for the remaining 6 cases. Discordance occurred because different markers were used to define the pro-B–to–pre-B transition by IHC vs flow cytometry. IHC expression of cytoplasmic IgM (μIgM) defined the pre-B stage, whereas the common practice of using CD25 as a surrogate marker in flow cytometry was employed here. These results show that CD25 and μIgM are not always concurrently expressed in B-ALL/LBL, in contrast to normal B-cell development. Therefore, when subtyping B-ALL/LBL in mice, an IHC panel of B220, PAX5, TdT, c-Kit/CD117, CD43, IgM, and ΚLC should be considered. For flow cytometry, cytoplasmic IgM may be an appropriate marker in conjunction with the surface markers B220, CD19, CD43, c-Kit/CD117, BP-1, and CD25.


2015 ◽  
Vol 60 (4) ◽  
pp. 651-660 ◽  
Author(s):  
Genjiro Suzuki ◽  
Jonathan S. Weissman ◽  
Motomasa Tanaka

Viruses ◽  
2014 ◽  
Vol 6 (9) ◽  
pp. 3612-3642 ◽  
Author(s):  
Jonathan Rawson ◽  
Louis Mansky

Viruses ◽  
2012 ◽  
Vol 4 (2) ◽  
pp. 211-235 ◽  
Author(s):  
Robyn N. Hall ◽  
Joanne Meers ◽  
Elizabeth Fowler ◽  
Timothy Mahony

Sign in / Sign up

Export Citation Format

Share Document