scholarly journals Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

Author(s):  
K. Jourde ◽  
D. Gibert ◽  
J. Marteau

Abstract. This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas – called acquisition kernels – and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

2015 ◽  
Vol 4 (2) ◽  
pp. 177-188 ◽  
Author(s):  
K. Jourde ◽  
D. Gibert ◽  
J. Marteau

Abstract. This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas – called acquisition kernels – and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernel approach allows one to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to be performed in order to obtain a given spatial resolution pattern of the density model to be constructed. The resolving kernels derived in the joined muon–gravimetry case indicate that gravity data are almost useless for constraining the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly, the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for the La Soufrière volcano of Guadeloupe.


2019 ◽  
Vol 217 (3) ◽  
pp. 1988-2002 ◽  
Author(s):  
Katherine Cosburn ◽  
Mousumi Roy ◽  
Elena Guardincerri ◽  
Charlotte Rowe

SUMMARYEstimating subsurface density is important for imaging various geologic structures such as volcanic edifices, reservoirs and aquifers. Muon tomography has recently been used to complement traditional gravity measurements as a powerful method for probing shallow subsurface density structure beneath volcanoes. Gravity and muon data have markedly different spatial sensitivities and, as a result, the combination is useful for imaging structures on spatial scales that are larger than the area encompassed by crossing muon trajectories. Here we explore and test a joint inversion of gravity and muon data in a study area where there is an independently characterized target anomaly: a regionally extensive, high-density layer beneath Los Alamos, New Mexico, USA. We resolve the nearly flat-lying structure using a unique experimental set-up wherein surface and subsurface gravity and muon measurements are obtained above and below the target volume. Our results show that with minimal geologic (prior) constraints, the joint inversion correctly recovers salient features of the expected density structure. The results of our study illustrate the potential of combining surface and subsurface (e.g. borehole) gravity and muon measurements to invert for shallow geologic structures.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2017 ◽  
Vol 5 (2) ◽  
pp. T243-T257 ◽  
Author(s):  
Martin Landrø ◽  
Mark Zumberge

We have developed a calibrated, simple time-lapse seismic method for estimating saturation changes from the [Formula: see text]-storage project at Sleipner offshore Norway. This seismic method works well to map changes when [Formula: see text] is migrating laterally away from the injection point. However, it is challenging to detect changes occurring below [Formula: see text] layers that have already been charged by some [Formula: see text]. Not only is this partly caused by the seismic shadow effects, but also by the fact that the velocity sensitivity for [Formula: see text] change in saturation from 0.3 to 1.0 is significantly less than saturation changes from zero to 0.3. To circumvent the seismic shadow zone problem, we combine the time-lapse seismic method with time-lapse gravity measurements. This is done by a simple forward modeling of gravity changes based on the seismically derived saturation changes, letting these saturation changes be scaled by an arbitrary constant and then by minimizing the least-squares error to obtain the best fit between the scaled saturation changes and the measured time-lapse gravity data. In this way, we are able to exploit the complementary properties of time-lapse seismic and gravity data.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Breili ◽  
R. Hougen ◽  
D. I. Lysaker ◽  
O. C. D. Omang ◽  
B. Tangen

AbstractThe Norwegian Mapping Authority (NMA) has recently established a new gravity laboratory in Ny-Ålesund at Svalbard, Norway. The laboratory consists of three independent pillars and is part of the geodetic core station that is presently under construction at Brandal, approximately 1.5 km north of NMA’s old station. In anticipation of future use of the new gravity laboratory, we present benchmark gravity values, gravity gradients, and final coordinates of all new pillars. Test measurements indicate a higher noise level at Brandal compared to the old station. The increased noise level is attributed to higher sensitivity to wind.We have also investigated possible consequences of moving to Brandal when it comes to the gravitational signal of present-day ice mass changes and ocean tide loading. Plausible models representing ice mass changes at the Svalbard archipelago indicate that the gravitational signal at Brandal may differ from that at the old site with a size detectable with modern gravimeters. Users of gravity data from Ny-Ålesund should, therefore, be cautious if future observations from the new observatory are used to extend the existing gravity record. Due to its lower elevation, Brandal is significantly less sensitive to gravitational ocean tide loading. In the future, Brandal will be the prime site for gravimetry in Ny-Ålesund. This ensures gravity measurements collocated with space geodetic techniques like VLBI, SLR, and GNSS.


2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Paolo Capuano ◽  
Guido Russo ◽  
Roberto Scarpa

<p>A high-resolution image of the compressional wave velocity and density structure in the shallow edifice of Mount Vesuvius has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes and from gravity inversion. The robustness of the tomography solution has been improved by adding to the earthquake data a set of land based shots, used for constraining the travel time residuals. The results give a high resolution image of the P-wave velocity structure with details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km depth below the central crater, distributed into two clusters, and separated by an anomalously high Vp region positioned at around 1 km depth. A zone with high Vp/Vs ratio in the upper layers is interpreted as produced by the presence of intense fluid circulation alternatively to the interpretation in terms of a small magma chamber inferred by petrologic studies. In this shallower zone the seismicity has the minimum energy, whilst most of the high-energy quakes (up to Magnitude 3.6) occur in the cluster located at greater depth. The seismicity appears to be located along almost vertical cracks, delimited by a high velocity body located along past intrusive body, corresponding to remnants of Mt. Somma. In this framework a gravity data inversion has been performed to study the shallower part of the volcano. Gravity data have been inverted using a method suitable for the application to scattered data in presence of relevant topography based on a discretization of the investigated medium performed by establishing an approximation of the topography by a triangular mesh. The tomography results, the retrieved density distribution, and the pattern of relocated seismicity exclude the presence of significant shallow magma reservoirs close to the central conduit. These should be located at depth higher than that of the base of the hypocenter volume, as evidenced by previous studies.</p>


2020 ◽  
Vol 55 (3) ◽  
pp. 100-117
Author(s):  
Viktor Szabó ◽  
Dorota Marjańska

AbstractGlobal satellite gravity measurements provide unique information regarding gravity field distribution and its variability on the Earth. The main cause of gravity changes is the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE seems to be the most dominating source of gravity data, sharing a unique set of observations from over 15 years. The results of this experiment are often of interest to geodesists and geophysicists due to its high compatibility with the other methods of gravity measurements, especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can provide conclusions concerning forecasts of subsurface water changes. The aim of this work is to present the issue of selection of filtration parameters for monthly gravity field solutions in RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław (Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal solutions in comparison with absolute terrestrial gravimetry data and making an attempt to indicate the significance of differences between solutions using various types of filtration (DDK, Gaussian) from selected research centres.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 807-816 ◽  
Author(s):  
Jérôme Verdun ◽  
Roger Bayer ◽  
Emile E. Klingelé ◽  
Marc Cocard ◽  
Alain Geiger ◽  
...  

This paper introduces a new approach to airborne gravity data reduction well‐suited for surveys flown at high altitude with respect to gravity sources (mountainous areas). Classical technique is reviewed and illustrated in taking advantage of airborne gravity measurements performed over the western French Alps by using a LaCoste & Romberg air‐sea gravity meter. The part of nongravitational vertical accelerations correlated with gravity meter measurements are investigated with the help of coherence spectra. Beam velocity has proved to be strikingly correlated with vertical acceleration of the aircraft. This finding is theoretically argued by solving the equation of the gravimetric system (gravity meter and stabilized platform). The transfer function of the system is derived, and a new formulation of airborne gravity data reduction, which takes care of the sensitive response of spring tension to observable gravity field wavelengths, is given. The resulting gravity signal exhibits a residual noise caused by electronic devices and short‐wavelength Eötvös effects. The use of dedicated exponential filters gives us a way to eliminate these high‐frequency effects. Examples of the resulting free‐air anomaly at 5100‐m altitude along one particular profile are given and compared with free‐air anomaly deduced from the classical method for processing airborne gravity data, and with upward‐continued ground gravity data. The well‐known trade‐off between accuracy and resolution is discussed in the context of a mountainous area.


2012 ◽  
Vol 19 (2) ◽  
pp. 291-296 ◽  
Author(s):  
M. Pilkington ◽  
P. Keating

Abstract. Most interpretive methods for potential field (magnetic and gravity) measurements require data in a gridded format. Many are also based on using fast Fourier transforms to improve their computational efficiency. As such, grids need to be full (no undefined values), rectangular and periodic. Since potential field surveys do not usually provide data sets in this form, grids must first be prepared to satisfy these three requirements before any interpretive method can be used. Here, we use a method for grid preparation based on a fractal model for predicting field values where necessary. Using fractal field values ensures that the statistical and spectral character of the measured data is preserved, and that unwanted discontinuities at survey boundaries are minimized. The fractal method compares well with standard extrapolation methods using gridding and maximum entropy filtering. The procedure is demonstrated on a portion of a recently flown aeromagnetic survey over a volcanic terrane in southern British Columbia, Canada.


Sign in / Sign up

Export Citation Format

Share Document