scholarly journals Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the Oslo CTM3 and CEDS emission inventory

2018 ◽  
Vol 11 (12) ◽  
pp. 4909-4931 ◽  
Author(s):  
Marianne Tronstad Lund ◽  
Gunnar Myhre ◽  
Amund Søvde Haslerud ◽  
Ragnhild Bieltvedt Skeie ◽  
Jan Griesfeller ◽  
...  

Abstract. We document the ability of the new-generation Oslo chemistry-transport model, Oslo CTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014. Overall, Oslo CTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The treatment of black carbon (BC) scavenging in Oslo CTM3 gives better agreement with observed vertical BC profiles relative to the predecessor Oslo CTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution, and scavenging affect the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration. Using CEDS, we estimate a net RFari in 2014 relative to 1750 of −0.17 W m−2, significantly weaker than the IPCC AR5 2011–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.

2018 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Amund S. Haslerud ◽  
Ragnhild B. Skeie ◽  
Jan Griesfeller ◽  
...  

Abstract. We document the ability of the new generation Oslo chemistry-transport model, OsloCTM3, to accurately simulate present-day aerosol distributions. The model is then used with the new Community Emission Data System (CEDS) historical emission inventory to provide updated time series of anthropogenic aerosol concentrations and consequent direct radiative forcing (RFari) from 1750 to 2014. Overall, the OsloCTM3 performs well compared with measurements of surface concentrations and remotely sensed aerosol optical depth. Concentrations are underestimated in Asia, but the higher emissions in CEDS than previous inventories result in improvements compared to observations. The black carbon (BC) treatment in OsloCTM3 gives better agreement with observed vertical BC profiles relative to the predecessor OsloCTM2. However, Arctic wintertime BC concentrations remain underestimated, and a range of sensitivity tests indicate that better physical understanding of processes associated with atmospheric BC processing is required to simultaneously reproduce both the observed features. Uncertainties in model input data, resolution and scavenging affects the distribution of all aerosols species, especially at high latitudes and altitudes. However, we find no evidence of consistently better model performance across all observables and regions in the sensitivity tests than in the baseline configuration. Using CEDS, we estimate a total net RFari in 2014 relative to 1750 of −0.17 W m−2, significantly weaker than the IPCC AR5 2010–1750 estimate. Differences are attributable to several factors, including stronger absorption by organic aerosol, updated parameterization of BC absorption, and reduced sulfate cooling. The trend towards a weaker RFari over recent years is more pronounced than in the IPCC AR5, illustrating the importance of capturing recent regional emission changes.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


2014 ◽  
Vol 14 (11) ◽  
pp. 5513-5527 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.


2014 ◽  
Vol 14 (3) ◽  
pp. 3427-3458
Author(s):  
C. D. Holmes ◽  
M. J. Prather ◽  
G. C. M. Vinken

Abstract. Nitrogen oxide (NOx) emissions from maritime shipping produce ozone (O3) and hydroxyl radicals (OH), which in turn destroy methane (CH4). The balance between this warming (due to O3) and cooling (due to CH4) determines the net effect of ship NOx on climate. Previous estimates of the chemical impact and radiative forcing (RF) of ship NOx have generally assumed that plumes of ship exhaust are instantly diluted into model grid cells spanning hundreds of kilometers, even though this is known to produce biased results. Here we improve the parametric representation of exhaust-gas chemistry developed in the GEOS-Chem chemical transport model (CTM) to provide the first estimate of RF from shipping that accounts for sub-grid-scale ship plume chemistry. The CTM now calculates O3 production and CH4 loss both within and outside the exhaust plumes and also accounts for the effect of wind speed. With the improved modeling of plumes, ship NOx perturbations are smaller than suggested by the ensemble of past global modeling studies, but if we assume instant dilution of ship NOx on the grid scale, the CTM reproduces previous model results. Our best estimates of the RF components from increasing ship NOx emissions by 1 Tg(N) yr−1 are smaller than given in the past literature: +3.4 ± 0.85 mW m−2 from the short-lived ozone increase, −5.0 ± 1.1 mW m−2 from the CH4 decrease, and −1.7 ± 0.7 mW m−2 from the long-lived O3 decrease that accompanies the CH4 change. The resulting net RF is −3.3 ± 1.8 mW m−2 for emissions of 1 Tg(N) yr−1. Due to non-linearity in O3 production as a function of background NOx, RF from large changes in ship NOx emissions, such as the increase since preindustrial times, is about 20% larger than this RF value for small marginal emission changes. Using sensitivity tests in one CTM, we quantify sources of uncertainty in the RF components and causes of the ±30% spread in past model results. The main source of uncertainty is the composition of the background atmosphere in the CTM, which is driven by model formulation (±10 to 20%) and the plausible range of anthropogenic emissions (±10%).


2011 ◽  
Vol 11 (8) ◽  
pp. 24127-24164 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We investigate the climate response to US anthropogenic aerosol sources over the 1950 to 2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the potential warming from aerosol source controls in the US has already been realized over the 1980–2010 period.


2012 ◽  
Vol 12 (7) ◽  
pp. 3349-3362 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We investigate the climate response to changing US anthropogenic aerosol sources over the 1950–2050 period by using the NASA GISS general circulation model (GCM) and comparing to observed US temperature trends. Time-dependent aerosol distributions are generated from the GEOS-Chem chemical transport model applied to historical emission inventories and future projections. Radiative forcing from US anthropogenic aerosols peaked in 1970–1990 and has strongly declined since due to air quality regulations. We find that the regional radiative forcing from US anthropogenic aerosols elicits a strong regional climate response, cooling the central and eastern US by 0.5–1.0 °C on average during 1970–1990, with the strongest effects on maximum daytime temperatures in summer and autumn. Aerosol cooling reflects comparable contributions from direct and indirect (cloud-mediated) radiative effects. Absorbing aerosol (mainly black carbon) has negligible warming effect. Aerosol cooling reduces surface evaporation and thus decreases precipitation along the US east coast, but also increases the southerly flow of moisture from the Gulf of Mexico resulting in increased cloud cover and precipitation in the central US. Observations over the eastern US show a lack of warming in 1960–1980 followed by very rapid warming since, which we reproduce in the GCM and attribute to trends in US anthropogenic aerosol sources. Present US aerosol concentrations are sufficiently low that future air quality improvements are projected to cause little further warming in the US (0.1 °C over 2010–2050). We find that most of the warming from aerosol source controls in the US has already been realized over the 1980–2010 period.


2014 ◽  
Vol 14 (13) ◽  
pp. 6801-6812 ◽  
Author(s):  
C. D. Holmes ◽  
M. J. Prather ◽  
G. C. M. Vinken

Abstract. Nitrogen oxide (NOx) emissions from maritime shipping produce ozone (O3) and hydroxyl radicals (OH), which in turn destroy methane (CH4). The balance between this warming (due to O3) and cooling (due to CH4) determines the net effect of ship NOx on climate. Previous estimates of the chemical impact and radiative forcing (RF) of ship NOx have generally assumed that plumes of ship exhaust are instantly diluted into model grid cells spanning hundreds of kilometers, even though this is known to produce biased results. Here we improve the parametric representation of exhaust-gas chemistry developed in the GEOS-Chem chemical transport model (CTM) to provide the first estimate of RF from shipping that accounts for sub-grid-scale ship plume chemistry. The CTM now calculates O3 production and CH4 loss both within and outside the exhaust plumes and also accounts for the effect of wind speed. With the improved modeling of plumes, ship NOx perturbations are smaller than suggested by the ensemble of past global modeling studies, but if we assume instant dilution of ship NOx on the grid scale, the CTM reproduces previous model results. Our best estimates of the RF components from increasing ship NOx emissions by 1 Tg(N) yr−1 are smaller than that given in the past literature: + 3.4 ± 0.85 mW m−2 (1σ confidence interval) from the short-lived ozone increase, −5.7 ± 1.3 mW m−2 from the CH4 decrease, and −1.7 ± 0.7 mW m−2 from the long-lived O3 decrease that accompanies the CH4 change. The resulting net RF is −4.0 ± 2.0 mW m−2 for emissions of 1 Tg(N) yr−1. Due to non-linearity in O3 production as a function of background NOx, RF from large changes in ship NOx emissions, such as the increase since preindustrial times, is about 20% larger than this RF value for small marginal emission changes. Using sensitivity tests in one CTM, we quantify sources of uncertainty in the RF components and causes of the ±30% spread in past model results; the main source of uncertainty is the composition of the background atmosphere in the CTM, which is driven by model formulation (±10 to 20%) and the plausible range of anthropogenic emissions (±10%).


2013 ◽  
Vol 13 (12) ◽  
pp. 32925-32961 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is often confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). We use here a coupled global chemical transport model (GEOS-Chem) and radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100), while the climate feedbacks on aerosols under rising global temperatures will likely amplify. Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.


2017 ◽  
Vol 30 (16) ◽  
pp. 6585-6589 ◽  
Author(s):  
Bjorn Stevens ◽  
Stephanie Fiedler

Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, [Formula: see text] must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and [Formula: see text] In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby [Formula: see text] becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on [Formula: see text] These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and [Formula: see text] and thus provides little basis for revising this lower bound.


2019 ◽  
Author(s):  
Marianne T. Lund ◽  
Gunnar Myhre ◽  
Bjørn H. Samset

Abstract. Emissions of anthropogenic aerosols are expected to change drastically over the coming decades, with potentially significant climate implications. Using the most recent generation of harmonized emission scenarios, the Shared Socioeconomic Pathways (SSPs) as input to a global chemistry transport and radiative transfer model, we provide estimates of the projected future global and regional burdens and radiative forcing of anthropogenic aerosols under three different levels of air pollution control: strong (SSP1), medium (SSP2) and weak (SSP3). We find that the broader range of future air pollution emission trajectories spanned by the SSPs compared to previous scenarios translates into total aerosol forcing estimates in 2100 relative to 1750 ranging from −0.04 W m−2 in SSP1-1.9 to −0.51 W m−2 in SSP3-7.0. Compared to our 1750–2015 estimate of −0.61 W m−2, this shows that depending on the success of air pollution policies over the coming decades, aerosol radiative forcing may weaken by nearly 95 % or remain close to the pre-industrial to present-day level. In all three scenarios there is a positive forcing in 2100 relative to 2015, from 0.51 W m−2 in SSP1-1.9 to 0.04 W m−2 in SSP3-7.0. Results also demonstrate significant differences across regions and scenarios, especially in South Asia and Africa. While rapid weakening of the negative aerosol forcing following effective air quality policies will unmask more of the greenhouse gas-induced global warming, slow progress on mitigating air pollution will significantly enhance the atmospheric aerosol levels and risk to human health. In either case, the resulting impacts on regional and global climate can be significant.


Sign in / Sign up

Export Citation Format

Share Document