scholarly journals Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication

2021 ◽  
Vol 14 (6) ◽  
pp. 3843-3878
Author(s):  
Camelia-Eliza Telteu ◽  
Hannes Müller Schmied ◽  
Wim Thiery ◽  
Guoyong Leng ◽  
Peter Burek ◽  
...  

Abstract. Global water models (GWMs) simulate the terrestrial water cycle on the global scale and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modelling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how 16 state-of-the-art GWMs are designed. We analyse water storage compartments, water flows, and human water use sectors included in models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to enhance model intercomparison, improvement, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Six models used six compartments, while four models (DBH, JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water for the irrigation sector. We conclude that, even though hydrological processes are often based on similar equations for various processes, in the end these equations have been adjusted or models have used different values for specific parameters or specific variables. The similarities and differences found among the models analysed in this study are expected to enable us to reduce the uncertainty in multi-model ensembles, improve existing hydrological processes, and integrate new processes.

2021 ◽  
Author(s):  
Camelia-Eliza Telteu ◽  
Hannes Müller Schmied ◽  
Wim Thiery ◽  
Guoyong Leng ◽  
Peter Burek ◽  
...  

Abstract. Global water models (GWMs) simulate the terrestrial water cycle, on the global scale, and are used to assess the impacts of climate change on freshwater systems. GWMs are developed within different modeling frameworks and consider different underlying hydrological processes, leading to varied model structures. Furthermore, the equations used to describe various processes take different forms and are generally accessible only from within the individual model codes. These factors have hindered a holistic and detailed understanding of how different models operate, yet such an understanding is crucial for explaining the results of model evaluation studies, understanding inter-model differences in their simulations, and identifying areas for future model development. This study provides a comprehensive overview of how state-of-the-art GWMs are designed. We analyze water storage compartments, water flows, and human water use sectors included in 16 GWMs that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b). We develop a standard writing style for the model equations to further enhance model improvement, intercomparison, and communication. In this study, WaterGAP2 used the highest number of water storage compartments, 11, and CWatM used 10 compartments. Seven models used six compartments, while three models (JULES-W1, Mac-PDM.20, and VIC) used the lowest number, three compartments. WaterGAP2 simulates five human water use sectors, while four models (CLM4.5, CLM5.0, LPJmL, and MPI-HM) simulate only water used by humans for the irrigation sector. We conclude that even though hydrologic processes are often based on similar equations, in the end, these equations have been adjusted or have used different values for specific parameters or specific variables. Our results highlight that the predictive uncertainty of GWMs can be reduced through improvements of the existing hydrologic processes, implementation of new processes in the models, and high-quality input data.


2013 ◽  
Vol 17 (7) ◽  
pp. 2393-2413 ◽  
Author(s):  
N. Hanasaki ◽  
S. Fujimori ◽  
T. Yamamoto ◽  
S. Yoshikawa ◽  
Y. Masaki ◽  
...  

Abstract. A global water scarcity assessment for the 21st century was conducted under the latest socio-economic scenario for global change studies, namely Shared Socio-economic Pathways (SSPs). SSPs depict five global situations with substantially different socio-economic conditions. In the accompanying paper, a water use scenario compatible with the SSPs was developed. This scenario considers not only quantitative socio-economic factors such as population and electricity production but also qualitative ones such as the degree of technological change and overall environmental consciousness. In this paper, water availability and water scarcity were assessed using a global hydrological model called H08. H08 simulates both the natural water cycle and major human activities such as water abstraction and reservoir operation. It simulates water availability and use at daily time intervals at a spatial resolution of 0.5° × 0.5°. A series of global hydrological simulations were conducted under the SSPs, taking into account different climate policy options and the results of climate models. Water scarcity was assessed using an index termed the Cumulative Abstraction to Demand ratio, which is expressed as the accumulation of daily water abstraction from a river divided by the daily consumption-based potential water demand. This index can be used to express whether renewable water resources are available from rivers when required. The results suggested that by 2071–2100 the population living under severely water-stressed conditions for SSP1-5 will reach 2588–2793 × 106 (39–42% of total population), 3966–4298 × 106 (46–50%), 5334–5643 × 106 (52–55%), 3427–3786 × 106 (40–45%), 3164–3379 × 106 (46–49%) respectively, if climate policies are not adopted. Even in SSP1 (the scenario with least change in water use and climate) global water scarcity increases considerably, as compared to the present-day. This is mainly due to the growth in population and economic activity in developing countries, and partly due to hydrological changes induced by global warming.


2014 ◽  
Vol 18 (8) ◽  
pp. 2955-2973 ◽  
Author(s):  
A. I. J. M. van Dijk ◽  
L. J. Renzullo ◽  
Y. Wada ◽  
P. Tregoning

Abstract. We present a global water cycle reanalysis that merges water balance estimates derived from the Gravity Recovery And Climate Experiment (GRACE) satellite mission, satellite water level altimetry and off-line estimates from several hydrological models. Error estimates for the sequential data assimilation scheme were derived from available uncertainty information and the triple collocation technique. Errors in four GRACE storage products were estimated to be 11–12 mm over land areas, while errors in monthly storage changes derived from five global hydrological models were estimated to be 17–28 mm. Prior and posterior water storage estimates were evaluated against independent observations of river water level and discharge, snow water storage and glacier mass loss. Data assimilation improved or maintained agreement overall, although results varied regionally. Uncertainties were greatest in regions where glacier mass loss and subsurface storage decline are both plausible but poorly constrained. We calculated a global water budget for 2003–2012. The main changes were a net loss of polar ice caps (−342 Gt yr−1) and mountain glaciers (−230 Gt yr−1), with an additional decrease in seasonal snowpack (−18 Gt yr−1). Storage increased due to new impoundments (+16 Gt yr−1), but this was compensated by decreases in other surface water bodies (−10 Gt yr−1). If the effect of groundwater depletion (−92 Gt yr−1) is considered separately, subsurface water storage increased by +202 Gt yr−1 due particularly to increased wetness in northern temperate regions and in the seasonally wet tropics of South America and southern Africa. The reanalysis results are publicly available via www.wenfo.org/wald/.


2007 ◽  
Vol 2 (2) ◽  
Author(s):  
S. Liu ◽  
C. Makropoulos ◽  
D. Butler ◽  
F. A. Memon

An object based household water cycle model has been developed using Matlab (Simulink) in the WaND (Water Cycle Management for New Developments) project to facilitate the development of an optioneering tool. The aim of the tool is to allow the assessment of options for conventional and innovative water management over the long term. Benefits of this approach include flexibility, easy expansion and transferability. An object is defined as a generic abstraction of micro-components which have similar functionalities in a household water use context. Following this concept, four kinds of objects are employed - water source, water use, treatment and sink. Each object has a generic interface which indicates its main attributes and functionality. Micro-components which belong to the same object share the same generic interface. An object can be easily implemented by specifying the associated property table and Matlab file. This forms a system - objects - micro-components - database hierarchical architecture. This paper describes the model development so far and includes initial model runs to demonstrate the power and performance of the approach.


2021 ◽  
Author(s):  
Stephan Dietrich ◽  
Valentin Aich ◽  
Wouter Dorigo ◽  
Thomas Recknagel ◽  
Harald Koethe ◽  
...  

<p>Life on earth is closely linked to the availability of water and its variability. However, global change means that the demands placed on water resources are constantly increasing. According to the conclusions of the IPCC's 5th Assessment Report, it is likely that human activities have influenced the global water cycle since 1960. Satellite-based remote sensing of water-related parameters and operational data-assimilation services are becoming increasingly important to assess changes of the global water cycle as part of the essential climate variables (gcos.wmo.int). However, particularly over land or in the deep ocean where space-borne monitoring is not possible, in-situ data provide long-term records of changes in the various components of the hydrological cycle.</p><p>Global data centres, often operating under the auspices of UN agencies, collect and harmonise water data worldwide and make the global data sets available to the public again. Most of these relevant Global Data Centres are members of the Global Terrestrial Network of Hydrology (GTN-H) that operates under auspices of WMO and the Terrestrial observation Panel of Climate (TOPC) of the Global Climate Observing System GCOS. GTN-H links existing networks and systems for integrated observations of the global water cycle. The network was established in 2001 as a „network of networks“ to support a range of climate and water resource objectives, building on existing networks and data centres, and producing value-added products through enhanced communications and shared development. Since 2017 the GTN-H coordination is held by the International Centre for Water Resources and Global change (ICWRGC, operating under auspices of the UNESCO) aiming for a data and knowledge transfer between data providers, scientists and decision makers as well as between the different institutional bodies on UN-level inter alia the WMO, UNESCO, FAO, UNEP or GCOS.</p><p>We will demonstrate the state-of-the art of the global in-situ terrestrial water resources monitoring and draw a picture of a global water observation architecture. <br>As a major outcome we will share the most recent evaluation of global water storage and water cycle fluxes. Here, we assess the relevant land, atmosphere, and ocean water storage and the fluxes between them, including anthropogenic water use. Based on the assessment, we discuss gaps in existing observation systems and formulate guidelines for future water cycle observation strategies.</p>


2021 ◽  
Author(s):  
Mohammad J. Tourian ◽  
Omid Elmi ◽  
Yasin Shafaghi ◽  
Sajedeh Behnia ◽  
Peyman Saemian ◽  
...  

Abstract. Against the backdrop of global change, both in terms of climate and demography, there is a pressing need for monitoring the global water cycle. The publicly available global database is very limited in its spatial and temporal coverage worldwide. Moreover, the acquisition of in situ data and their delivery to the database are in decline since the late 1970s, be it for economical or political reasons. Given the insufficient monitoring from in situ gauge networks, and with no outlook for improvement, spaceborne approaches have been under investigation for some years now. Satellite-based Earth observation with its global coverage and homogeneous accuracy has been demonstrated to be a potential alternative to in situ measurements. This paper presents HydroSat as a repository of global water cycle products from spaceborne geodetic sensors. HydroSat provides time series and their uncertainty of: water level from satellite altimetry, surface water extent from satellite imagery, terrestrial water storage anomaly from satellite gravimetry, lake and reservoir water storage anomaly from a combination of satellite altimetry and imagery, and river discharge from either satellite altimetry or imagery. These products can contribute to understanding the global water cycle within the Earth system in several ways. They can act as inputs to hydrological models, they can play a complementary role to current and future spaceborne observations, and they can define indicators of the past and future state of the global freshwater system. The repository is publicly available through http://hydrosat.gis.uni-stuttgart.de.


Author(s):  
Richard G. Lawford ◽  
Sushel Unninayar

The global water cycle concept has its roots in the ancient understanding of nature. Indeed, the Greeks and Hebrews documented some of the most some important hydrological processes. Furthermore, Africa, Sri Lanka, and China all have archaeological evidence to show the sophisticated nature of water management that took place thousands of years ago. During the 20th century, a broader perspective was taken and the hydrological cycle was used to describe the terrestrial and freshwater component of the global water cycle. Data analysis systems and modeling protocols were developed to provide the information needed to efficiently manage water resources. These advances were helpful in defining the water in the soil and the movement of water between stores of water over land surfaces. Atmospheric inputs to these balances were also monitored, but the measurements were much more reliable over countries with dense networks of precipitation gauges and radiosonde observations. By the 1960s, early satellites began to provide images that gave a new perception of Earth processes, including a more complete realization that water cycle components and processes were continuous in space and could not be fully understood through analyses partitioned by geopolitical or topographical boundaries. In the 1970s, satellites delivered quantitative radiometric measurements that allowed for the estimation of a number of variables such as precipitation and soil moisture. In the United States, by the late 1970s, plans were made to launch the Earth System Science program, led by the National Aeronautics and Space Agency (NASA). The water component of this program integrated terrestrial and atmospheric components and provided linkages with the oceanic component so that a truly global perspective of the water cycle could be developed. At the same time, the role of regional and local hydrological processes within the integrated “global water cycle” began to be understood. Benefits of this approach were immediate. The connections between the water and energy cycles gave rise to the Global Energy and Water Cycle Experiment (GEWEX)1 as part of the World Climate Research Programme (WCRP). This integrated approach has improved our understanding of the coupled global water/energy system, leading to improved prediction models and more accurate assessments of climate variability and change. The global water cycle has also provided incentives and a framework for further improvements in the measurement of variables such as soil moisture, evapotranspiration, and precipitation. In the past two decades, groundwater has been added to the suite of water cycle variables that can be measured from space. New studies are testing innovative space-based technologies for high-resolution surface water level measurements. While many benefits have followed from the application of the global water cycle concept, its potential is still being developed. Increasingly, the global water cycle is assisting in understanding broad linkages with other global biogeochemical cycles, such as the nitrogen and carbon cycles. Applications of this concept to emerging program priorities, including the Sustainable Development Goals (SDGs) and the Water-Energy-Food (W-E-F) Nexus, are also yielding societal benefits.


2013 ◽  
Vol 10 (12) ◽  
pp. 15475-15523 ◽  
Author(s):  
A. I. J. M. van Dijk ◽  
L. J. Renzullo ◽  
Y. Wada ◽  
P. Tregoning

Abstract. We present a global water cycle reanalysis that reconciles water balance estimates derived from the GRACE satellite mission, satellite water level altimetry and off-line estimates from several hydrological models. Error estimates for the sequential data assimilation scheme were derived from available uncertainty information and the triple collocation technique. Errors in four GRACE storage products were estimated to be 11–12 mm over land areas, while errors in monthly storage changes derived from five global hydrological models were estimated to be 17–28 mm. Prior and posterior estimates were evaluated against independent observations of river water level and discharge, snow water storage and glacier mass loss. Data assimilation improved or maintained agreement overall, although results varied regionally. Uncertainties were greatest in regions where glacier mass loss and sub-surface storage decline are both plausible but poorly constrained. We calculated a global water budget for 2003–2012. The main changes were a net loss of polar ice (−341 Gt yr−1) and mountain glaciers (−185 Gt yr−1), with an additional decrease in seasonal snow pack (−19 Gt yr−1). Storage in lakes increased by +77 Gt yr−1, due to new reservoir impoundments (+87 Gt yr−1), water level change in the Caspian Sea (−27 Gt yr−1) and net increases in the remaining lakes combined (+17 Gt yr−1). There was no change in subsurface storage, because groundwater depletion (−90 Gt yr−1) was offset by increased water storage in the seasonally wet tropics of South America and southern Africa (+87 Gt yr−1), which agrees with observed and predicted changes in the tropical monsoon.


2012 ◽  
Vol 9 (12) ◽  
pp. 13933-13994 ◽  
Author(s):  
N. Hanasaki ◽  
S. Fujimori ◽  
T. Yamamoto ◽  
S. Yoshikawa ◽  
Y. Masaki ◽  
...  

Abstract. A global water scarcity assessment for the 21st century was conducted under the latest socio-economic scenario for global change studies, namely Shared Socio-economic Pathways (SSPs). SSPs depict five global situations with substantially different socio-economic conditions. In the accompanying paper, a water use scenario compatible with the SSPs was developed. This scenario considers not only quantitative socio-economic factors such as population and electricity production but also qualitative ones such as the degree of technological change and overall environmental consciousness. In this paper, water availability and water scarcity were assessed using a global hydrological model called H08. H08 simulates both the natural water cycle and major human activities such as water withdrawal and reservoir operation. It simulates water availability and use at daily time intervals at a spatial resolution of 0.5° × 0.5°. A series of global hydrological simulations were conducted under the SSPs, taking into account different climate policy options and the results of climate models. Water scarcity was assessed using an index termed the Cumulative Withdrawal to Demand ratio, which is expressed as the accumulation of daily water withdrawal from a river over the potential daily water consumption demand. This index can be used to express whether renewable water resources are available from rivers when required. The results suggested that by 2071–2100 the population living under severely water stressed conditions for SSP1-5 will reach 2588–2793 × 106 (39–42% of total population), 3966–4298 × 106 (46–50%), 5334–5643 × 106 (52–55%), 3427–3786 × 106 (40–45%), 3164–3379 × 106 (46–49%), respectively, if climate policies are not adopted. Even in SSP1 (the scenario with least change in water use and climate) global water scarcity increases considerably, as compared to the present day. This is mainly due to the growth in population and economic activity in developing countries, and partly due to hydrological changes induced by global warming.


Sign in / Sign up

Export Citation Format

Share Document