Diagnosing Cloud Feedbacks in General Circulation Models

2007 ◽  
Vol 20 (11) ◽  
pp. 2602-2622 ◽  
Author(s):  
Ping Zhu ◽  
James J. Hack ◽  
Jeffrey T. Kiehl

Abstract In this study, it is shown that the NCAR and GFDL GCMs exhibit a marked difference in climate sensitivity of clouds and radiative fluxes in response to doubled CO2 and ±2-K SST perturbations. The GFDL model predicted a substantial decrease in cloud amount and an increase in cloud condensate in the warmer climate, but produced a much weaker change in net cloud radiative forcing (CRF) than the NCAR model. Using a multiple linear regression (MLR) method, the full-sky radiative flux change at the top of the atmosphere was successfully decomposed into individual components associated with the clear sky and different types of clouds. The authors specifically examined the cloud feedbacks due to the cloud amount and cloud condensate changes involving low, mid-, and high clouds between 60°S and 60°N. It was found that the NCAR and GFDL models predicted the same sign of individual longwave and shortwave feedbacks resulting from the change in cloud amount and cloud condensate for all three types of clouds (low, mid, and high) despite the different cloud and radiation schemes used in the models. However, since the individual longwave and shortwave feedbacks resulting from the change in cloud amount and cloud condensate generally have the opposite signs, the net cloud feedback is a subtle residual of all. Strong cancellations between individual cloud feedbacks may result in a weak net cloud feedback. This result is consistent with the findings of the previous studies, which used different approaches to diagnose cloud feedbacks. This study indicates that the proposed MLR approach provides an easy way to efficiently expose the similarity and discrepancy of individual cloud feedback processes between GCMs, which are hidden in the total cloud feedback measured by CRF. Most importantly, this method has the potential to be applied to satellite measurements. Thus, it may serve as a reliable and efficient method to investigate cloud feedback mechanisms on short-term scales by comparing simulations with available observations, which may provide a useful way to identify the cause for the wide spread of cloud feedbacks in GCMs.

2004 ◽  
Vol 4 (5) ◽  
pp. 6823-6836 ◽  
Author(s):  
C. Luo

Abstract. Long-term and large-scale correlations between Advanced Very High-Resolution Radiometer (AVHRR) aerosol optical depth and International Satellite Cloud Climatology Project (ISCCP) monthly cloud amount data show significant regional scale relationships between cloud amount and aerosols, consistent with aerosol-cloud interactions. Positive correlations between aerosols and cloud amount are associated with North American and Asian aerosols in the North Atlantic and Pacific storm tracks, and mineral aerosols in the tropical North Atlantic. Negative correlations are seen near biomass burning regions of North Africa and Indonesia, as well as south of the main mineral aerosol source of North Africa. These results suggest that there are relationships between aerosols and clouds in the observations that can be used by general circulation models to verify the correct forcing mechanisms for both direct and indirect radiative forcing by clouds.


2013 ◽  
Vol 13 (7) ◽  
pp. 18809-18853
Author(s):  
M. R. Vuolo ◽  
M. Schulz ◽  
Y. Balkanski ◽  
T. Takemura

Abstract. The quantification and understanding of direct aerosol forcing is essential in the study of climate. One of the main issues that makes its quantification difficult is the lack of a complete comprehension of the role of the aerosol and clouds vertical distribution. This work aims at reducing the incertitude of aerosol forcing due to the vertical superposition of several short-lived atmospheric components, in particular different aerosols species and clouds. We propose a method to quantify the contribution of different parts of the atmospheric column to the forcing, and to evaluate model differences by isolating the effect of radiative interactions only. Any microphysical or thermo-dynamical interactions between aerosols and clouds are deactivated in the model, to isolate the effects of radiative flux coupling. We investigate the contribution of aerosol above, below and in clouds, by using added diagnostics in the aerosol-climate model LMDz. We also compute the difference between the forcing of the ensemble of the aerosols and the sum of the forcings from individual species, in clear-sky. This difference is found to be moderate on global average (14%) but can reach high values regionally (up to 100%). The non-additivity of forcing already for clear-sky conditions shows, that in addition to represent well the amount of individual aerosol species, it is critical to capture the vertical distribution of all aerosols. Nonlinear effects are even more important when superposing aerosols and clouds. Four forcing computations are performed, one where the full aerosol 3-D distribution is used, and then three where aerosols are confined to regions above, inside and below clouds respectively. We find that the forcing of aerosols depends crucially on the presence of clouds and on their position relative to that of the aerosol, in particular for black carbon (BC). We observe a strong enhancement of the forcing of BC above clouds, attenuation for BC below clouds, and a moderate enhancement when BC is found within clouds. BC forcing efficiency amounts to 44, 171, 333 and 178 W m-2 per unit optical depth for BC below, within, above clouds and for the 3-D BC distribution, respectively. The different behaviour of forcing nonlinearities for these three components of the atmospheric column suggests that, an important reason for differences between cloudy-sky aerosol forcings from different models may come from different aerosol and clouds vertical distributions. Our method allows to evaluate the contribution to model differences due to aerosol and clouds radiative interactions only, by reading 3-D aerosol and cloud fields from different GCMs, into the same model. This method avoids differences in calculating optical aerosol properties and forcing to enter into the discussion of inter-model differences. It appears that the above and in-cloud amount of BC is larger for SPRINTARS (190 compared to 179), increasing its cloudy-sky forcing efficiency with respect to LMDz, being thus potentially an important factor for inter-model differences.


2012 ◽  
Vol 25 (21) ◽  
pp. 7607-7624 ◽  
Author(s):  
Benjamin M. Sanderson ◽  
Karen M. Shell

Radiative kernels have become a common tool for evaluating and comparing radiative feedbacks to climate change in different general circulation models. However, kernel feedback calculations are inaccurate for simulations where the atmosphere is significantly perturbed from its base state, such as for very large forcing or perturbed physics simulations. In addition, past analyses have not produced kernels relating to prognostic cloud variables because of strong nonlinearities in their relationship to radiative forcing. A new methodology is presented that allows for fast statistical optimizing of existing kernels such that accuracy is increased for significantly altered climatologies. International Satellite Cloud Climatology Project (ISCCP) simulator output is used to relate changes in cloud-type histograms to radiative fluxes. With minimal additional computation, an individual set of kernels is created for each climate experiment such that climate feedbacks can be reliably estimated even in significantly perturbed climates. This methodology is applied to successive generations of the Community Atmosphere Model (CAM). Increased climate sensitivity in CAM5 is shown to be due to reduced negative stratus and stratocumulus feedbacks in the tropics and midlatitudes, strong positive stratus feedbacks in the southern oceans, and a strengthened positive longwave cirrus feedback. Results also suggest that CAM5 exhibits a stronger surface albedo feedback than its predecessors, a feature not apparent when using a single kernel. Optimized kernels for CAM5 suggest weaker global-mean shortwave cloud feedback than one would infer from using the original kernels and an adjusted cloud radiative forcing methodology.


2000 ◽  
Vol 18 (5) ◽  
pp. 583-588 ◽  
Author(s):  
W. Soon ◽  
E. Posmentier ◽  
S. Baliunas

Abstract. We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous) · Solar physics · astrophysics · and astronomy (ultraviolet emissions)


2014 ◽  
Vol 10 (2) ◽  
pp. 697-713 ◽  
Author(s):  
G. Le Hir ◽  
Y. Teitler ◽  
F. Fluteau ◽  
Y. Donnadieu ◽  
P. Philippot

Abstract. During the Archaean, the Sun's luminosity was 18 to 25% lower than the present day. One-dimensional radiative convective models (RCM) generally infer that high concentrations of greenhouse gases (CO2, CH4) are required to prevent the early Earth's surface temperature from dropping below the freezing point of liquid water and satisfying the faint young Sun paradox (FYSP, an Earth temperature at least as warm as today). Using a one-dimensional (1-D) model, it was proposed in 2010 that the association of a reduced albedo and less reflective clouds may have been responsible for the maintenance of a warm climate during the Archaean without requiring high concentrations of atmospheric CO2 (pCO2). More recently, 3-D climate simulations have been performed using atmospheric general circulation models (AGCM) and Earth system models of intermediate complexity (EMIC). These studies were able to solve the FYSP through a large range of carbon dioxide concentrations, from 0.6 bar with an EMIC to several millibars with AGCMs. To better understand this wide range in pCO2, we investigated the early Earth climate using an atmospheric GCM coupled to a slab ocean. Our simulations include the ice-albedo feedback and specific Archaean climatic factors such as a faster Earth rotation rate, high atmospheric concentrations of CO2 and/or CH4, a reduced continental surface, a saltier ocean, and different cloudiness. We estimated full glaciation thresholds for the early Archaean and quantified positive radiative forcing required to solve the FYSP. We also demonstrated why RCM and EMIC tend to overestimate greenhouse gas concentrations required to avoid full glaciations or solve the FYSP. Carbon cycle–climate interplays and conditions for sustaining pCO2 will be discussed in a companion paper.


2021 ◽  
Vol 13 (21) ◽  
pp. 4464
Author(s):  
Jiawen Xu ◽  
Xiaotong Zhang ◽  
Chunjie Feng ◽  
Shuyue Yang ◽  
Shikang Guan ◽  
...  

Surface upward longwave radiation (SULR) is an indicator of thermal conditions over the Earth’s surface. In this study, we validated the simulated SULR from 51 Coupled Model Intercomparison Project (CMIP6) general circulation models (GCMs) through a comparison with ground measurements and satellite-retrieved SULR from the Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF). Moreover, we improved the SULR estimations by a fusion of multiple CMIP6 GCMs using multimodel ensemble (MME) methods. Large variations were found in the monthly mean SULR among the 51 CMIP6 GCMs; the bias and root mean squared error (RMSE) of the individual CMIP6 GCMs at 133 sites ranged from −3 to 24 W m−2 and 22 to 38 W m−2, respectively, which were higher than those found between the CERES EBAF and GCMs. The CMIP6 GCMs did not improve the overestimation of SULR compared to the CMIP5 GCMs. The Bayesian model averaging (BMA) method showed better performance in simulating SULR than the individual GCMs and simple model averaging (SMA) method, with a bias of 0 W m−2 and an RMSE of 19.29 W m−2 for the 133 sites. In terms of the global annual mean SULR, our best estimation for the CMIP6 GCMs using the BMA method was 392 W m−2 during 2000–2014. We found that the SULR varied between 386 and 393 W m−2 from 1850 to 2014, exhibiting an increasing tendency of 0.2 W m−2 per decade (p < 0.05).


2011 ◽  
Vol 11 (3) ◽  
pp. 9057-9081
Author(s):  
T. Kurtén ◽  
L. Zhou ◽  
R. Makkonen ◽  
J. Merikanto ◽  
P. Räisänen ◽  
...  

Abstract. The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations is predicted to significantly decrease hydroxyl radical (OH) concentrations, while moderately increasing ozone (O3). These changes lead to a 70% increase in the atmospheric lifetime of methane, and an 18% decrease in global mean cloud droplet number concentrations (CDNC). The CDNC change causes a radiative forcing that is comparable in magnitude to the longwave radiative forcing ("enhanced greenhouse effect") of the added methane. Together, the indirect CH4-O3 and CH4-OH-aerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously large temperature changes associated with historic methane releases.


2013 ◽  
Vol 6 (2) ◽  
pp. 3349-3380 ◽  
Author(s):  
P. B. Holden ◽  
N. R. Edwards ◽  
P. H. Garthwaite ◽  
K. Fraedrich ◽  
F. Lunkeit ◽  
...  

Abstract. Many applications in the evaluation of climate impacts and environmental policy require detailed spatio-temporal projections of future climate. To capture feedbacks from impacted natural or socio-economic systems requires interactive two-way coupling but this is generally computationally infeasible with even moderately complex general circulation models (GCMs). Dimension reduction using emulation is one solution to this problem, demonstrated here with the GCM PLASIM-ENTS. Our approach generates temporally evolving spatial patterns of climate variables, considering multiple modes of variability in order to capture non-linear feedbacks. The emulator provides a 188-member ensemble of decadally and spatially resolved (~ 5° resolution) seasonal climate data in response to an arbitrary future CO2 concentration and radiative forcing scenario. We present the PLASIM-ENTS coupled model, the construction of its emulator from an ensemble of transient future simulations, an application of the emulator methodology to produce heating and cooling degree-day projections, and the validation of the results against empirical data and higher-complexity models. We also demonstrate the application to estimates of sea-level rise and associated uncertainty.


2018 ◽  
Vol 31 (14) ◽  
pp. 5437-5459 ◽  
Author(s):  
Hui Ding ◽  
Matthew Newman ◽  
Michael A. Alexander ◽  
Andrew T. Wittenberg

Seasonal forecasts made by coupled atmosphere–ocean general circulation models (CGCMs) undergo strong climate drift and initialization shock, driving the model state away from its long-term attractor. Here we explore initializing directly on a model’s own attractor, using an analog approach in which model states close to the observed initial state are drawn from a “library” obtained from prior uninitialized CGCM simulations. The subsequent evolution of those “model-analogs” yields a forecast ensemble, without additional model integration. This technique is applied to four of the eight CGCMs comprising the North American Multimodel Ensemble (NMME) by selecting from prior long control runs those model states whose monthly tropical Indo-Pacific SST and SSH anomalies best resemble the observations at initialization time. Hindcasts are then made for leads of 1–12 months during 1982–2015. Deterministic and probabilistic skill measures of these model-analog hindcast ensembles are comparable to those of the initialized NMME hindcast ensembles, for both the individual models and the multimodel ensemble. In the eastern equatorial Pacific, model-analog hindcast skill exceeds that of the NMME. Despite initializing with a relatively large ensemble spread, model-analogs also reproduce each CGCM’s perfect-model skill, consistent with a coarse-grained view of tropical Indo-Pacific predictability. This study suggests that with little additional effort, sufficiently realistic and long CGCM simulations provide the basis for skillful seasonal forecasts of tropical Indo-Pacific SST anomalies, even without sophisticated data assimilation or additional ensemble forecast integrations. The model-analog method could provide a baseline for forecast skill when developing future models and forecast systems.


2021 ◽  
Author(s):  
Anna Mackie ◽  
Michael P. Byrne

&lt;div&gt; &lt;p&gt;Uncertainty in the response of clouds to warming remains&amp;#160;a significant&amp;#160;barrier to reducing the range in projected&amp;#160;climate sensitivity.&amp;#160;A&amp;#160;key&amp;#160;question is to what extent cloud&amp;#160;feedbacks&amp;#160;can be attributed to changes in circulation, such as&amp;#160;the strengthening or weakening of&amp;#160;ascent&amp;#160;or changes in the areas of&amp;#160;convecting&amp;#160;vs&amp;#160;subsiding air.&amp;#160;Previous research has shown that, in general circulation models (GCMs), the &amp;#8216;dynamic&amp;#8217; component of the cloud feedback &amp;#8211; that which is due to changes in circulation rather than changes in the thermodynamic properties of clouds (Bony et al., 2006)&amp;#160;&amp;#8211;&amp;#160;is&amp;#160;generally small (Byrne and Schneider, 2018).&amp;#160;An open question, however,&amp;#160;is&amp;#160;whether this&amp;#160;extends to&amp;#160;models at cloud resolving resolutions&amp;#160;that explicitly simulate deep convection.&amp;#160;&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;Here, we utilize simulations&amp;#160;from&amp;#160;the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP, Wing et al., 2018, 2020)&amp;#160;to quantify the&amp;#160;impact of circulation on tropical cloud&amp;#160;feedbacks.&amp;#160;RCE&amp;#160;is&amp;#160;a&amp;#160;simple&amp;#160;idealisation&amp;#160;of the tropical atmosphere&amp;#160;and&amp;#160;we&amp;#160;focus on&amp;#160;simulations&amp;#160;in a long channel configuration&amp;#160;with&amp;#160;uniform sea surface temperatures&amp;#160;of&amp;#160;295, 300 and 305K.&amp;#160;The dynamic component of the&amp;#160;total cloud feedback is&amp;#160;substantial&amp;#160;for&amp;#160;this&amp;#160;suite of cloud resolving models (CRMs),&amp;#160;and is driven by circulation changes&amp;#160;and nonlinearity in the&amp;#160;climatological&amp;#160;relationship between clouds and circulation. The&amp;#160;large spread&amp;#160;in dynamic&amp;#160;component&amp;#160;across models&amp;#160;is linked to&amp;#160;the extent to which convection&amp;#160;strengthens&amp;#160;and narrows&amp;#160;with&amp;#160;warming.&amp;#160;This strengthening/narrowing of convective regions&amp;#160;is&amp;#160;further&amp;#160;linked to&amp;#160;changes in&amp;#160;clear-sky radiative cooling&amp;#160;and mid-tropospheric static stability&amp;#160;in subsiding regions.&amp;#160;&lt;/p&gt; &lt;/div&gt;&lt;div&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;/div&gt;


Sign in / Sign up

Export Citation Format

Share Document