scholarly journals Influence of Bulk Microphysics Schemes upon Weather Research and Forecasting (WRF) Version 3.6.1 Nor'easter Simulations

2016 ◽  
Author(s):  
Stephen D. Nicholls ◽  
Steven G. Decker ◽  
Wei-Kuo Tao ◽  
Stephen E. Lang ◽  
Jainn J. Shi ◽  
...  

Abstract. This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPS) on Weather Research and Forecasting (WRF) model (version 3.6.1) winter storm simulations. Model simulations were integrated for 180 hours, starting 72 hours prior to the first measurable precipitation in the highly populated Mid-Atlantic U.S. Simulated precipitation fields were well-matched to precipitation products. However, total accumulations tended to be over biased (1.10–2.10) and exhibited low-to-moderate threat scores (0.27–0.59). Non-frozen hydrometeor species from single-moment BMPS produced similar mixing ratio profiles and maximum saturation levels due to a common parameterization heritage. Greater variability occurred with frozen microphysical species due to varying assumptions among BMPSs regarding ice supersaturation amounts, the dry collection of snow by graupel, various ice collection efficiencies, snow and graupel density and size mappings/intercept parameters, and hydrometeor terminal velocities. The addition of double-moment rain and cloud water resulted in minimal change to species spatial extent or maximum saturation level, however rain mixing ratios tended higher. Although hydrometeor differences varied by up to an order of magnitude among the BMPSs, similarly large variability was not upscaled to mesoscale and synoptic scales.

2017 ◽  
Vol 10 (2) ◽  
pp. 1033-1049 ◽  
Author(s):  
Stephen D. Nicholls ◽  
Steven G. Decker ◽  
Wei-Kuo Tao ◽  
Stephen E. Lang ◽  
Jainn J. Shi ◽  
...  

Abstract. This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217–0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.


2015 ◽  
Vol 143 (12) ◽  
pp. 4997-5016 ◽  
Author(s):  
Stephen D. Nicholls ◽  
Steven G. Decker

Abstract The impact of ocean–atmosphere coupling and its possible seasonal dependence upon Weather Research and Forecasting (WRF) Model simulations of seven, wintertime cyclone events was investigated. Model simulations were identical aside from the degree of ocean model coupling (static SSTs, 1D mixed layer model, full-physics 3D ocean model). Both 1D and 3D ocean model coupling simulations show that SSTs following the passage of a nor’easter did tend to cool more strongly during the early season (October–December) and were more likely to warm late in the season (February–April). Model simulations produce SST differences of up to 1.14 K, but this change did not lead to significant changes in storm track (<100 km), maximum 10-m winds (<2 m s−1), or minimum sea level pressure (≤5 hPa). Simulated precipitation showed little sensitivity to model coupling, but all simulations did tend to overpredict precipitation extent (bias > 1) and have low-to-moderate threat scores (0.31–0.59). Analysis of the storm environment and the overall simulation failed to reveal any statistically significant differences in model error attributable to ocean–atmosphere coupling. Despite this result, ocean model coupling can reduce dynamical field error at a single level by up to 20%, and this was slightly greater (1%–2%) with 3D ocean model coupling as compared to 1D ocean model coupling. Thus, while 3D ocean model coupling tended to generally produce more realistic simulations, its impact would likely be more profound for longer-term simulations.


2017 ◽  
Vol 10 (11) ◽  
pp. 4229-4244 ◽  
Author(s):  
Joseph C. Y. Lee ◽  
Julie K. Lundquist

Abstract. Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.


2017 ◽  
Author(s):  
Joseph C. Y. Lee ◽  
Julie K. Lundquist

Abstract. Forecasts of wind power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate that a vertical grid with nominally 12-m vertical resolution is necessary for reproducing the observed power production, with statistical significance. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed and low turbulence conditions. We also find the WFP performance is independent of atmospheric stability, the number of wind turbines per model grid cell, and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.


Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Santos J. González-Rojí ◽  
Jon Sáenz ◽  
Javier Díaz de Argandoña ◽  
Gabriel Ibarra-Berastegi

In this paper, we have estimated the spatiotemporal distribution of moisture recycling over the Iberian Peninsula (IP). The recycling ratio was computed from two simulations over the IP using the Weather Research and Forecasting (WRF) model with a horizontal resolution of 15 km spanning the period 2010–2014. The first simulation (WRF N) was nested inside the ERA-Interim with information passed to the domain through the boundaries. The second run (WRF D) is similar to WRF N, but it also includes 3DVAR data assimilation every six hours (12:00 a.m., 6:00 a.m., 12:00 p.m. and 6:00 p.m. UTC). It was also extended until 2018. The lowest values of moisture recycling (3%) are obtained from November to February, while the highest ones (16%) are observed in spring in both simulations. Moisture recycling is confined to the southeastern corner during winter. During spring and summer, a gradient towards the northeastern corner of the IP is observed in both simulations. The differences between both simulations are associated with the dryness of the soil in the model and are higher during summer and autumn. WRF D presents a lower bias and produces more reliable results because of a better representation of the atmospheric moisture.


2012 ◽  
Vol 13 (2) ◽  
pp. 695-708 ◽  
Author(s):  
Thomas K. Flesch ◽  
Gerhard W. Reuter

Abstract This study examines simulations of two flooding events in Alberta, Canada, during June 2005, made using the Weather Research and Forecasting Model (WRF). The model was used in a manner readily accessible to nonmeteorologists (e.g., accepting default choices and parameters) and with a relatively large spatial resolution for rapid model runs. The simulations were skillful: strong storms were developed having the correct timing and location, generating precipitation rates close to observations, and with precipitation amounts near that observed. The model was then used to examine the sensitivity of the two storms to the topography of the Rocky Mountains. Comparing model results using the actual topographic grid with those of a reduced-mountain grid, it is concluded that a reduction in mountain elevation decreases maximum precipitation by roughly 50% over the mountains and foothills. There was little sensitivity to topography in the precipitation outside the mountains.


2018 ◽  
Vol 150 ◽  
pp. 03007 ◽  
Author(s):  
Syeda Maria Zaidi ◽  
Jacqueline Isabella Anak Gisen

In this study, the performance of two different Microphysics Scheme options in Weather Research and Forecasting (WRF) model were evaluated for the estimating the precipitation forecast. The schemes WRF single moment class-3 (WSM-3) and single moment class-6 (WSM-6) were employed to produce the minimum, medium and maximum precipitation for the selected events over the Kuantan River Basin (KRB). The obtained simulated results were compared with the observed data from eight different rainfall gauging stations. The results comparison indicate that WRF model provides better forecasting at some rainfall stations for minimum and medium rainfall events but did not produce good result during maximum rainfall overall. The WSM-6 scheme is found to produce better result compared to WSM-3. The study also found that to acquire accurate precipitation results, it is also required to test some other physics scheme parameterization to enhance the model performance.


2015 ◽  
Vol 16 (2) ◽  
pp. 615-630 ◽  
Author(s):  
Liping Deng ◽  
Matthew F. McCabe ◽  
Georgiy Stenchikov ◽  
Jason P. Evans ◽  
Paul A. Kucera

Abstract The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.


Sign in / Sign up

Export Citation Format

Share Document