scholarly journals comment on Soil salinization risk assessment owing to poor water quality drip irrigation

2020 ◽  
Author(s):  
Ruishan Chen
2020 ◽  
Author(s):  
Vladimir Mirlas ◽  
Yaakov Anker ◽  
Asher Aizenkod ◽  
Naftali Goldshleger

Abstract. Salinization causes soil degradation and soil fertility reduction. The main reasons for soil salinization are poor irrigation water quality and incorrect irrigation management. Soil salinization is accelerated owing to irrigation with treated wastewater with elevated salt concentration. The study area is located in the Beit She'an Valley, one of the most important agricultural regions in Israel. The combination of soil salinization and poor drainage conditions impedes plant development and is manifested in economic damage to crops. Without clear irrigation criteria, an increase in soil salinity and steady damage to soil fertility might occur. The study objective was to provide an assessment of soil salting processes as a result of low-quality irrigation water at the Kibbutz Meirav olive plantation. This study combined various research methods, including soil salinity monitoring, field experiments, remote sensing (FDEM), and unsaturated soil profile saline water movement modeling. The assessment included the salinization processes of chalky soil under drip irrigation by water with various qualities. With a drip irrigation regime of water with a dissolved salt content of 3.13 dS/m, the salinization process is characterized by salts accumulation in the upper root zone of the trees. The modeling results showed that there is a soil salinization danger in using brackish water and that irrigation with potable water helps to reduce soil salinization.


1998 ◽  
Vol 37 (2) ◽  
pp. 145-152 ◽  
Author(s):  
A. E. Nienhüser ◽  
P. Braches

Refilling of the Kerspe-Talsperre reservoir after restoration of the dam caused severe problems in water quality and supply due to a long-lasting ice-cover period and minimal precipitation. Unusually short spring overturn, high algal mass in spring and certainly the overflooding of the sediment, which had not been removed, caused a tremendous oxygen deficit in early summer. The whole hypolimnion turned anoxic and even in the metalimnion oxygen declined to a minimum. Manganese and iron reached high concentrations. Despite the poor water quality, raw water was urgently needed for the water supply and was pumped from the epilimnion during the clear water phase and in July when algal biomass was low. In the middle of August holomixis was induced artificially in order to improve water quality. The decline in algal production during and after artificial mixing was probably caused by light limitation of the algae.


2021 ◽  
Vol 232 (8) ◽  
Author(s):  
Ali Chabuk ◽  
Zahraa Ali Hammood ◽  
Nadhir Al-Ansari ◽  
Salwan Ali Abed ◽  
Jan Laue

AbstractIraq currently undergoing the problem of water shortage, although Iraq has two Rivers (Euphrates and Tigris) pass throughout most of its areas, and they have represented a major source of water supply. In the current research, to evaluate the quality of the Euphrates river in Iraq based on the values of total dissolved salts (TDS), the TDS concentrations were collected from sixteen sections along the river in the three succeeding years (2011, 2012, and 2013). The evaluation of the river was done depending on the classification of (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland). of rivers for drinking uses. Inverse Distance Weighting Technique (IDWT) as a tool in the GIS was employed to establish the maps of the river that using interpolation/prediction for the TDS concentrations to each selected year and the average values of TDS for these 3 years. Based on the five categories of rivers’ classification of the TDS concentrations according to the (W.H.O. (World Health Organization). (2003). Total Dissolved Salts in Drinking-water: Background document for development of W.H.O. Guidelines for Drinking-water Quality. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland), the Euphrates river was classified, and the maps of classification for the years 2011, 2012 and 2013 and the average values for 3 years were created. The average values for 3 years of TDS along the Euphrates river indicated that the sections from SC-1 to SC-4 as moderate-water-quality-Category-3, the sections from SC-5 to SC-10 as poor-water-quality-Category-4, while the sections between SC-11 to SC-16 as very poor-water-quality-Category-5. The interpolation maps showed that the Euphrates river in Iraq was ranged from moderate water quality (Category-3) to very poor water quality (Category-5).


2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2011 ◽  
Vol 101 (3) ◽  
pp. 448-453 ◽  
Author(s):  
Joshua Graff Zivin ◽  
Matthew Neidell ◽  
Wolfram Schlenker

We examine the impact of poor water quality on avoidance behavior by estimating the change in bottled water purchases in response to drinking water violations. Using data from a national grocery chain matched with water quality violations, we find an increase in bottled water sales of 22 percent from violations due to microorganisms and 17 percent from violations due to elements and chemicals. Back-of-the envelope calculations yield costs of avoidance behavior at roughly $60 million for all nationwide violations in 2005, which likely reflects a significant understatement of the total willingness to pay to eliminate violations.


Sign in / Sign up

Export Citation Format

Share Document