scholarly journals Commentary on comparison of MODIS snow cover and albedo products with ground observations over the mountainous terrain of Turkey

2007 ◽  
Vol 11 (4) ◽  
pp. 1353-1360 ◽  
Author(s):  
A. Ü. Şorman ◽  
Z. Akyürek ◽  
A. Şensoy ◽  
A. A. Şorman ◽  
A. E. Tekeli

Abstract. The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blösch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002–2003 and 2003–2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent (SWE) values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased.

2006 ◽  
Vol 3 (6) ◽  
pp. 3655-3673 ◽  
Author(s):  
A. Ü. Şorman ◽  
Z. Akyürek ◽  
A. Şensoy ◽  
A. A. Şorman ◽  
A. E. Tekeli

Abstract. The MODerate-resolution Imaging Spectroradiometer (MODIS) snow cover product was evaluated by Parajka and Blösch (2006) over the territory of Austria. The spatial and temporal variability of the MODIS snow product classes are analyzed, the accuracy of the MODIS snow product against numerous in situ snow depth data are examined and the main factors that may influence the MODIS classification accuracy are identified in their studies. The authors of this paper would like to provide more discussion to the scientific community on the "Validation of MODIS snow cover images" when similar methodology is applied to mountainous regions covered with abundant snow but with limited number of ground survey and automated stations. Daily snow cover maps obtained from MODIS images are compared with ground observations in mountainous terrain of Turkey for the winter season of 2002–2003 and 2003–2004 during the accumulation and ablation periods of snow. Snow depth and density values are recorded to determine snow water equivalent values at 19 points in and around the study area in Turkey. Comparison of snow maps with in situ data show good agreement with overall accuracies in between 62 to 82 percent considering a 2-day shift during cloudy days. Studies show that the snow cover extent can be used for forecasting of runoff hydrographs resulting mostly from snowmelt for a mountainous basin in Turkey. MODIS-Terra snow albedo products are also compared with ground based measurements over the ablation stage of 2004 using the automated weather operating stations (AWOS) records at fixed locations as well as from the temporally assessed measuring sites during the passage of the satellite. Temporarily assessed 20 ground measurement sites are randomly distributed around one of the AWOS stations and both MODIS and ground data were aggregated in GIS for analysis. Reduction in albedo is noticed as snow depth decreased and SWE values increased.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2006 ◽  
Vol 3 (4) ◽  
pp. 1569-1601 ◽  
Author(s):  
J. Parajka ◽  
G. Blöschl

Abstract. This study evaluates the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product over the territory of Austria. The aims are (a) to analyse the spatial and temporal variability of the MODIS snow product classes, (b) to examine the accuracy of the MODIS snow product against in situ snow depth data, and (c) to identify the main factors that may influence the MODIS classification accuracy. We use daily MODIS grid maps (version 4) and daily snow depth measurements at 754 climate stations in the period from February 2000 to December 2005. The results indicate that, on average, clouds obscured 63% of Austria, which may significantly restrict the applicability of the MODIS snow cover images to hydrological modelling. On cloud-free days, however, the classification accuracy is very good with an average of 95%. There is no consistent relationship between the classification errors and dominant land cover type and local topographical variability but there are clear seasonal patterns to the errors. In December and January the errors are around 15% while in summer they are less than 1%. This seasonal pattern is related to the overall percentage of snow cover in Austria, although in spring, when there is a well developed snow pack, errors tend to be smaller than they are in early winter for the same overall percent snow cover. Overestimation and underestimation errors balance during most of the year which indicates little bias. In November and December, however, there appears to exist a tendency for overestimation. Part of the errors may be related to the temporal shift between the in situ snow depth measurements (07:00 a.m.) and the MODIS acquisition time (early afternoon).


2008 ◽  
Vol 9 (6) ◽  
pp. 1416-1426 ◽  
Author(s):  
Naoki Mizukami ◽  
Sanja Perica

Abstract Snow density is calculated as a ratio of snow water equivalent to snow depth. Until the late 1990s, there were no continuous simultaneous measurements of snow water equivalent and snow depth covering large areas. Because of that, spatiotemporal characteristics of snowpack density could not be well described. Since then, the Natural Resources Conservation Service (NRCS) has been collecting both types of data daily throughout the winter season at snowpack telemetry (SNOTEL) sites located in the mountainous areas of the western United States. This new dataset provided an opportunity to examine the spatiotemporal characteristics of snowpack density. The analysis of approximately seven years of data showed that at a given location and throughout the winter season, year-to-year snowpack density changes are significantly smaller than corresponding snow depth and snow water equivalent changes. As a result, reliable climatological estimates of snow density could be obtained from relatively short records. Snow density magnitudes and densification rates (i.e., rates at which snow densities change in time) were found to be location dependent. During early and midwinter, the densification rate is correlated with density. Starting in early or mid-March, however, snowpack density increases by approximately 2.0 kg m−3 day−1 regardless of location. Cluster analysis was used to obtain qualitative information on spatial patterns of snowpack density and densification rates. Four clusters were identified, each with a distinct density magnitude and densification rate. The most significant physiographic factor that discriminates between clusters was proximity to a large water body. Within individual mountain ranges, snowpack density characteristics were primarily dependent on elevation.


2014 ◽  
Vol 10 (2) ◽  
pp. 145-160
Author(s):  
Katarína Kotríková ◽  
Kamila Hlavčová ◽  
Róbert Fencík

Abstract An evaluation of changes in the snow cover in mountainous basins in Slovakia and a validation of MODIS satellite images are provided in this paper. An analysis of the changes in snow cover was given by evaluating changes in the snow depth, the duration of the snow cover, and the simulated snow water equivalent in a daily time step using a conceptual hydrological rainfall-runoff model with lumped parameters. These values were compared with the available measured data at climate stations. The changes in the snow cover and the simulated snow water equivalent were estimated by trend analysis; its significance was tested using the Mann-Kendall test. Also, the satellite images were compared with the available measured data. From the results, it is possible to see a decrease in the snow depth and the snow water equivalent from 1961-2010 in all the months of the winter season, and significant decreasing trends were indicated in the months of December, January and February


2016 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F.P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However this provides no information on the actual amount of water stored in a snowpack i.e. the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ meteorological observations and a modified version of the seNorge snow model to estimate climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Landsat 8 and MOD10A2 snow cover maps were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 % and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an Ensemble Kalman filter. The approach of modelling snow depth in a Kalman filter framework allows for data-constrained estimation of SWE rather than snow cover alone and this has great potential for future studies in the Himalayas. Climate sensitivity tests with the optimized snow model show a strong decrease in SWE in the valley with increasing temperature. However, at high elevation a decrease in SWE is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature. Finally the climate sensitivity study revealed that snowmelt runoff increases in winter and early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature.


Author(s):  
Mohamed Wassim Baba ◽  
Simon Gascoin ◽  
Lahoucine Hanich

The snow melt from the High Atlas is a critical water resource in Morocco. In spite of its importance, monitoring the spatio-temporal evolution of key snow cover properties like the snow water equivalent remains challenging due to the lack of in situ measurements at high elevation. Since 2015, the Sentinel-2 mission provides high spatial resolution images with a 5 day revisit time, which offers new opportunities to characterize snow cover distribution in mountain regions. Here we present a new data assimilation scheme to estimate the state of the snowpack without in situ data. The model was forced using MERRA-2 data and a particle filter was developed to dynamically reduce the biases in temperature and precipitation using Sentinel-2 observations of the snow cover area. The assimilation scheme was implemented using SnowModel, a distributed energy-balance snowpack model and tested in a pilot catchment in the High Atlas. The study period covers 2015-2016 snow season which corresponds to the first operational year of Sentinel-2A, therefore the full revisit capacity was not yet achieved. Yet, we show that the data assimilation led to a better agreement with independent observations of the snow height at an automatic weather station and the snow cover extent from MODIS. The performance of the data assimilation scheme should benefit from the continuous improvements in MERRA-2 reanalyses and the full revisit capacity of Sentinel-2.


2020 ◽  
Vol 163 ◽  
pp. 06003
Author(s):  
Evgenii Churiulin ◽  
Vladimir Kopeykin ◽  
Natalia Frolova ◽  
Inna Krylenko

Seasonal snow cover has a significant impact on forming spring floods. Sparse snow course-measuring network does not meet the requirements of modern tasks related to the technologies of numerical weather prediction (NWP) systems and runoff formation models. Moreover, insufficient volume of hydrometeorological data creates a need to improve spring floods forecasting methods by means of available modern hydrometeorological information related to snow cover. To work out an efficient solution to the issue of initial snow data preparation we need a complex approach including the use of data from satellite, atmospheric models, physical-mathematical models of snow cover and insitu information. This approach will provide modern NWP and hydrological models with reliable initial data on snow cover (snow water equivalent – SWE, snow density – SD). The main purpose of our investigation is related to approbation of satellite data and development of snow cover calculation methods for NWP and hydrological models. Numerous SWE and SD experiments have been performed in order to achieve this aim. A regional snow data assimilation system for COSMORu was implemented during the research. Moreover, a new method of hydrological modelling of spring floods based on ECOMAG model with initial information from COSMO-Ru, SnoWE and in-situ data has been proposed and tested.


2018 ◽  
Vol 19 (11) ◽  
pp. 1777-1791 ◽  
Author(s):  
Nicholas Dawson ◽  
Patrick Broxton ◽  
Xubin Zeng

Abstract Global snow water equivalent (SWE) products derived at least in part from satellite remote sensing are widely used in weather, climate, and hydrometeorological studies. Here we evaluate three such products using our recently developed daily 4-km SWE dataset available from October 1981 to September 2017 over the conterminous United States. This SWE dataset is based on gridded precipitation and temperature data and thousands of in situ measurements of SWE and snow depth. It has a 0.98 correlation and 30% relative mean absolute deviation with Airborne Snow Observatory data and effectively bridges the gap between small-scale lidar surveys and large-scale remotely sensed data. We find that SWE products using remote sensing data have large differences (e.g., the mean absolute difference from our SWE data ranges from 45.8% to 59.3% of the mean SWE in our data), especially in forested areas (where this percentage increases up to 73.5%). Furthermore, they consistently underestimate average maximum SWE values and produce worse SWE (including spurious jumps) during snowmelt. Three additional higher-resolution satellite snow cover extent (SCE) products are used to compare the SCE values derived from these SWE products. There is an overall close agreement between these satellite SCE products and SCE generated from our SWE data, providing confidence in our consistent SWE, snow depth, and SCE products based on gridded climate and station data. This agreement is also stronger than that between satellite SCE and those derived from the three satellite SWE products, further confirming the deficiencies of the SWE products that utilize remote sensing data.


2009 ◽  
Vol 48 (12) ◽  
pp. 2487-2512 ◽  
Author(s):  
Yves Durand ◽  
Gérald Giraud ◽  
Martin Laternser ◽  
Pierre Etchevers ◽  
Laurent Mérindol ◽  
...  

Abstract Since the early 1990s, Météo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratigraphy, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions (massifs) in the French Alps and the Pyrenees. This Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN)–Crocus–Modèle Expert de Prévision du Risque d’Avalanche (MEPRA) model chain (SCM), usually applied to operational daily avalanche forecasting, is here used for retrospective snow and climate analysis. For this study, the SCM chain used both meteorological observations and guess fields mainly issued from the newly reanalyzed atmospheric model 40-yr ECMWF Re-Analysis (ERA-40) data and ran on an hourly basis over a period starting in the winter of 1958/59 until recent past winters. Snow observations were finally used for validation, and the results presented here concern only the main climatic features of the alpine modeled snowfields at different spatial and temporal scales. The main results obtained confirm the very significant spatial and temporal variability of the modeled snowfields with regard to certain key parameters such as those describing ground coverage or snow depth. Snow patterns in the French Alps are characterized by a marked declining gradient from the northwestern foothills to the southeastern interior regions. This applies mainly to both depths and durations, which exhibit a maximal latitudinal variation at 1500 m of about 60 days, decreasing strongly with the altitude. Enhanced at low elevations, snow depth shows a mainly negative temporal variation over the study period, especially in the north and during late winters, while the south exhibits more smoothed features. The number of days with snow on the ground shows also a significant general signal of decrease at low and midelevation, but this signal is weaker in the south than in the north and less visible at high elevation. Even if a statistically significant test cannot be performed for all elevations and areas, the temporal decrease is present in all the studied quantities. Concerning snow duration, this general decrease can also be interpreted as a sharp variation of the mean values at the end of the 1980s, inducing a step effect in its time series rather than a constant negative temporal trend. The results have also been interpreted in terms of potential for a viable ski industry, especially in the southern areas, and for different changing climatic conditions. Presently, French downhill ski resorts are economically viable from a range of about 1200 m MSL in the northern foothills to 2000 m in the south, but future prospects are uncertain. In addition, no clear and direct relationship between the North Atlantic Oscillation (NAO) or the ENSO indexes and the studied snow parameters could be established in this study.


Sign in / Sign up

Export Citation Format

Share Document