scholarly journals Quantitative analysis on the environmental impact of large-scale water transfer project on water resource area in a changing environment

2012 ◽  
Vol 16 (8) ◽  
pp. 2685-2702 ◽  
Author(s):  
D. H. Yan ◽  
H. Wang ◽  
H. H. Li ◽  
G. Wang ◽  
T. L. Qin ◽  
...  

Abstract. The interbasin long-distance water transfer project is key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatio-temporal change of water resources to secure the amount of water available. Large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes uncertainty and additive effect of the environmental impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of megaprojects in both construction and operation phases has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis, we identified the influencing factors and established the diagnostic index system. The climate-hydrology-ecology coupled simulation model was used to simulate and predict ecological and environmental responses of the water resource area in a changing environment. The emphasis of impact evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment below the dam sites. In the end, an overall evaluation of the comprehensive influence of the project was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects: the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water extraction. The impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.

2011 ◽  
Vol 8 (6) ◽  
pp. 10465-10500 ◽  
Author(s):  
D. H. Yan ◽  
H. Wang ◽  
H. H. Li ◽  
G. Wang ◽  
T. L. Qin ◽  
...  

Abstract. The interbasin long-distance water transfer project is a key support for the reasonable allocation of water resources in a large-scale area, which can optimize the spatiotemporal change of water resources to reinforce the guarantee of the access of water resources. And large-scale water transfer projects have a deep influence on ecosystems; besides, global climate change causes the uncertainty and additive effect of the ecological impact of water transfer projects. Therefore, how to assess the ecological and environmental impact of large-scale water transfer projects in both construction and operation has triggered a lot of attention. The water-output area of the western route of China's South-North Water Transfer Project was taken as the study area of the present article. According to relevant evaluation principles and on the basis of background analysis on the eco-environment of the study area, the influence factors were identified and evaluation indexes were established. The climate-hydrology-ecology coupled simulation model was used to imitate the laws of ecological and environmental change of the water resource area in a changing climate. The emphasis of influence analysis and quantitative evaluation was placed on the reservoir construction and operation scheduling, representative river corridors and wetlands, natural reserves and the water environment of river basins below the dam sites. In the end, an overall influence evaluation of the impact of the project on the water circulation and ecological evolution of the water resource area was conducted. The research results were as follows: the environmental impacts of the western route project in the water resource area were concentrated on two aspects, i.e. the permanent destruction of vegetation during the phase of dam construction and river impoundment, and the significant influence on the hydrological situation of natural river corridor after the implementation of water transfer. Its impact on local climate, vegetation ecology, typical wetlands, natural reserves and the water environment of river basins below the dam sites was small.


Author(s):  
Takeshi Mizunoya ◽  
Noriko Nozaki ◽  
Rajeev Kumar Singh

AbstractIn the early 2000s, Japan instituted the Great Heisei Consolidation, a national strategy to promote large-scale municipal mergers. This study analyzes the impact that this strategy could have on watershed management. We select the Lake Kasumigaura Basin, the second largest lake in Japan, for the case study and construct a dynamic expanded input–output model to simulate the ecological system around the Lake, the socio-environmental changes over the period, and their mutual dependency for the period 2012–2020. In the model, we regulate and control the following water pollutants: total nitrogen, total phosphorus, and chemical oxygen demand. The results show that a trade-off between economic activity and the environment can be avoided within a specific range of pollution reduction, given that the prefectural government implements optimal water environment policies, assuming that other factors constraining economic growth exist. Additionally, municipal mergers are found to significantly reduce the budget required to improve the water environment, but merger budget efficiency varies nonlinearly with the reduction rate. Furthermore, despite the increase in financial efficiency from the merger, the efficiency of installing domestic wastewater treatment systems decreases drastically beyond a certain pollution reduction level and eventually reaches a limit. Further reductions require direct regulatory instruments in addition to economic policies, along with limiting the output of each industry. Most studies on municipal mergers apply a political, administrative, or financial perspective; few evaluate the quantitative impact of municipal mergers on the environment and environmental policy implications. This study addresses these gaps.


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


2014 ◽  
Vol 70 (11) ◽  
pp. 1774-1781 ◽  
Author(s):  
Yifan Ding ◽  
Deshan Tang ◽  
Yuhang Wei ◽  
Sun Yin

Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water–society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social–economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.


Author(s):  
Elżbieta Zębek

The primary objective of the water protection in the Water Framework Directive No. 2000/60/ EC is to maintain and improve the water environment by achieving good water status. These provisions have been implemented into Polish legislation in the Water Law Act of 2017. These goals are achieved by the use of appropriate legal instruments as a system of water-law approvals, including a permit, notification and legal-water assessment. The subject of the analysis is water-legal assessments as a new legal and administrative instrument of water protection. The aim is to deter-mine the legal nature of water-law assessments and to indicate their role in the protection of surface waters. Obtaining this assessment is required for investments that may affect the possibility of achieving environmental goals. If the planned investment has a positive or no impact on the possibility of achieving the environmental goals, it seems that the legal-water assessment is made. In the case of a negative impact, the obligation to submit documents confirming that all measures are taken to mitigate the negative effects of the impact on the state of water bodies are imposed. In this way, the legislator strengthened the protection of waters by imposing the obligation to meet additional conditions for large-scale investments that have a negative impact on the water environment.


2019 ◽  
Vol 81 ◽  
pp. 01003
Author(s):  
Hongjie Gao ◽  
Peng Yuan ◽  
Ruixia Liu ◽  
Lu Han ◽  
Yonghui Song

In this study, the assessment of nationwide urban water environment status was conducted based upon a method of integrating both 70% of objective water quality and 30% of standard compliance percent compared with national standard limit of GB3838-2002 for Class III. The impact factors on urban water environment status were discussed. The results showed that the status of urban water environment could be graded into 5 types in China. The population density, water resources, urbanized areas and so on were key impact factors on water environment. The study found that population density and urban built-up area had significantly negative effect on urban water environment status, and there was positive relationship between per capita water resources and urban water environment status. The results would provide the guidance for effective governance and management of urban water environment at national level.


2015 ◽  
Vol 744-746 ◽  
pp. 2362-2366 ◽  
Author(s):  
Sheng Guo Xu ◽  
Jin Feng Qu ◽  
Fang Qing Dong ◽  
Chun Li Chu ◽  
Gui Mei Jiang ◽  
...  

The construction of water conservancy project will inevitably have some impact on the surrounding ecological environment, while construction of the water conservancy facilities is indispensable for the full play of wetland ecological function. It involving how to avoid damage to the local ecological environment in the process of large-scale water conservancy construction has become an important problem that construction of China's water conservancy project has to face.This paper analyses the construction of Qilihai south pumping station’s ecological and environmental impact on Qilihai wetland to give an example for the impact of water conservancy project.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


2014 ◽  
Vol 4 (3) ◽  
pp. 137-153 ◽  
Author(s):  
Wenyi Wang ◽  
Weihua Zeng ◽  
Bo Yao ◽  
Jing Wei

Due to the fast growth of the economy and population, the water scarcity issue has aroused widespread critical concern. In fact, reasonable structure, adaptive patterns and effective regulation of the economy, society and water resources can bring a harmonious future. Therefore, the study of how to balance economic social growth and water resources is of great importance. A model of the water resource, society and economy system of the Tongzhou district was designed by Stella. The model established here attempts to analyze future trends in social-economic development and the impact of the economic and population growth on water use in the Tongzhou district under three scenarios. The results reveal that the water shortage is very serious. If the current trends persist, the existing water supply will not be able to meet the water demand in the future. Tongzhou district's water shortage will be 162.50 million m3 in 2020 under the business-as-usual scenario. Therefore, it is necessary to develop unconventional water sources and improve the water-saving capacity of production and life to alleviate the water tensions. This research offers insight into larger questions regarding economic growth and water resource management in general.


Author(s):  
X. B. Wang ◽  
Z. L. Wang

Abstract The paper uses the super-efficiency DEA (Data Envelopment Analysis) model to measure the water resources utilization efficiency of 30 provinces in China, and then uses the system GMM (Generalized Method of Moments) model to analyze the impact of environmental regulations on China's regional water resources utilization efficiency. Conclusions as follows: (1) The overall water utilization efficiency is low, and the regions are very unbalanced. The more efficient areas are concentrated in the east, and the less efficient areas are in the west; (2)There is a ‘U’-shaped relationship between the intensity of environmental regulation and water resource utilization efficiency, that is, weaker environmental regulation intensity is not conducive to the improvement of water resource utilization efficiency, but when the intensity of environmental regulation crosses the ‘inflection point’, it can promote the improvement of water resources utilization efficiency; (3) The level of economic development has a very significant positive effect on water resources utilization efficiency, and the coefficient of scientific and technological progress is positive, but the impact of scientific and technological input on water resources utilization efficiency is limited and not significant; industrial structure and water resource utilization efficiency shows a negative correlation; water use structure and water resources efficiency show a negative correlation.


Sign in / Sign up

Export Citation Format

Share Document