scholarly journals A new discrete multiplicative random cascade model for downscaling intermittent rainfall fields

2019 ◽  
Author(s):  
Marc Schleiss

Abstract. Spatial downscaling of rainfall fields is a challenging mathematical problem for which many different types of methods have been proposed. One popular solution consists in redistributing rainfall amounts over smaller and smaller scales by means of a discrete multiplicative random cascade (DMRC). This works well for slowly varying, homogeneous rainfall fields but often fails in the presence of intermittency (i.e., large amounts of zero rainfall values). The most common workaround in this case is to use two separate cascade models, one for the occurrence and another for the intensity. In this paper, a new and simpler approach based on the notion of equal-volume areas (EVAs) is proposed. Unlike classical cascades where rainfall amounts are redistributed over grid cells of equal size, the EVA cascade splits grid cells into areas of different sizes, each of them containing exactly half of the original amount of water. The relative areas of the sub-grid cells are determined by drawing random values from a logit-normal cascade generator model with scale and intensity dependent standard deviation. The process ends when the amount of water in each sub-grid cell is smaller than a fixed bucket capacity, at which point the output of the cascade can be re-sampled over a regular Cartesian mesh. The present paper describes the implementation of the EVA cascade model and gives some first results for 100 selected events in the Netherlands. Performance is assessed by comparing the outputs of the EVA model to bilinear interpolation and to a classical DMRC model based on fixed grid cell sizes. Results show that on average, the EVA cascade outperforms the classical method, producing fields with more realistic distributions, small-scale extremes and spatial structures. Improvements are mostly credited to the higher robustness of the EVA model to the presence of intermittency and to the lower variance of its generator. However, improvements are not systematic and both approaches have their advantages and weaknesses. For example, while the classical cascade tends to overestimate small-scale extremes and variability, the EVA model tends to produce fields that are slightly too smooth and blocky compared with observations.

2020 ◽  
Vol 24 (7) ◽  
pp. 3699-3723
Author(s):  
Marc Schleiss

Abstract. Spatial downscaling of rainfall fields is a challenging mathematical problem for which many different types of methods have been proposed. One popular solution consists of redistributing rainfall amounts over smaller and smaller scales by means of a discrete multiplicative random cascade (DMRCs). This works well for slowly varying homogeneous rainfall fields but often fails in the presence of intermittency (i.e., large amounts of zero rainfall values). The most common workaround in this case is to use two separate cascade models, namely one for the occurrence and another for the intensity. In this paper, a new and simpler approach based on the notion of equal-volume areas (EVAs) is proposed. Unlike classical cascades where rainfall amounts are redistributed over grid cells of equal size, the EVA cascade splits grid cells into areas of different sizes, with each of them containing exactly half of the original amount of water. The relative areas of the subgrid cells are determined by drawing random values from a logit-normal cascade generator model with scale and intensity-dependent standard deviation (SD). The process ends when the amount of water in each subgrid cell is smaller than a fixed-bucket capacity, at which point the output of the cascade can be resampled over a regular Cartesian mesh. The present paper describes the implementation of the EVA cascade model and gives some first results for 100 selected events in the Netherlands. Performance is assessed by comparing the outputs of the EVA model to bilinear interpolation and to a classical DMRC model based on fixed grid cell sizes. Results show that, on average, the EVA cascade outperforms the classical method, producing fields with more realistic distributions, small-scale extremes and spatial structures. Improvements are mostly credited to the higher robustness of the EVA model in the presence of intermittency and to the lower variance of its generator. However, both approaches have their advantages and weaknesses. For example, while the classical cascade tends to overestimate small-scale variability and extremes, the EVA model tends to produce fields that are slightly too smooth and block shaped compared to the observations. The complementary nature of the two approaches, and the fact that they produce errors of opposite signs, opens up new possibilities for quality control and bias corrections of downscaled fields.


2020 ◽  
Vol 11 (1) ◽  
pp. 1-21
Author(s):  
Bastiaan Bruinsma

AbstractWhile the design of voting advice applications (VAAs) is witnessing an increasing amount of attention, one aspect has until now been overlooked: its visualisations. This is remarkable, as it are those visualisations that communicate to the user the advice of the VAA. Therefore, this article aims to provide a first look at which visualisations VAAs adopt, why they adopt them, and how users comprehend them. For this, I will look at how design choices, specifically those on matching, influence the type of visualisation VAAs not only do but also have to, use. Second, I will report the results of a small-scale experiment that looked if all users comprehend similar visualisations in the same way. Here, I find that this is often not the case and that the interpretations of the users often differ. These first results suggest that VAA visualisations are wrongly underappreciated and demand closer attention of VAA designers.


Author(s):  
Marco A. P. Rosas ◽  
Ana Paula F. Souza ◽  
Marcos V. Rodrigues ◽  
Danilo Machado L. da Silva

In this paper the behavior and the relationship between hydrostatic collapse pressure and diametrically opposed radial compressive force for pipelines were analyzed. This study presents an introduction of a research work aimed to assess the pipeline collapse pressure based on the radial collapse force. Initially the hydrostatic collapse pressure is analyzed, for pipes with different diameter to wall thickness ratio (D/t) and ovalities, using classical assessment (DNV method) and numerical models (FE). Then, the compressive radial force is also analyzed using numerical models validated by a small-scale ring specimen test. After that, the relationship between hydrostatic collapse pressure and compressive radial force is discussed. These first results show that the radial force is a quadratic function of the collapse pressure.


1983 ◽  
Vol 4 ◽  
pp. 14-18 ◽  
Author(s):  
Raymond A. Assel

A digital ice-concentration database spanning 20 years (1960 to 1979) was established for the Great Lakes of North America. Data on ice concentration, i.e. the percentage of a unit surface area of the lake that is ice-covered, were abstracted from over 2 800 historic ice charts produced by United States and Canadian government agencies. The database consists of ice concentrations ranging from zero to 100% in 10% increments for individual grid cells of size 5 × 5 km constituting the surface area of each Great Lake. The data set for each of the Great Lakes was divided into half-month periods for statistical analysis. Maxinium, minimum, median, mode, and average ice-concentrations statistics were calculated for each grid cell and half-month period. A lakewide average value was then calculated for each of the half-month ice-concentration statistics for all grid cells for a given lake. Ice-cover variability and the normal extent and progression of the ice cover is discussed within the context of the lakewide averaged value of the minimum and maximum ice concentrations and the lakewide averaged value of the median ice concentrations, respectively. Differences in ice-cover variability among the five Great Lakes are related to mean lake depth and accumulated freezing degree-days. A Great Lakes ice atlas presenting a series of ice charts which depict the maximum, minimum, and median icecover concentrations for each of the Great Lakes for nine half-monthly periods, starting the last half of December and continuing through the last half of April will be published in 1983 by the National Oceanic and Atmospheric Administration (NOAA). The database will be archived at the National Snow and Ice Data Center of the National Environmental Satellite Data and Information Service (NESDIS) in Boulder, Colorado, USA, also in 1983.


2018 ◽  
Vol 80 (6) ◽  
Author(s):  
Siti Mariam Saad ◽  
Abdul Aziz Jemain ◽  
Noriszura Ismail

This study evaluates the utility and suitability of a simple discrete multiplicative random cascade model for temporal rainfall disaggregation. Two of a simple random cascade model, namely log-Poisson and log-Normal  models are applied to simulate hourly rainfall from daily rainfall at seven rain gauge stations in Peninsular Malaysia. The cascade models are evaluated based on the capability to simulate data that preserve three important properties of observed rainfall: rainfall variability, intermittency and extreme events. The results show that both cascade models are able to simulate reasonably well the commonly used statistical measures for rainfall variability (e.g. mean and standard deviation) of hourly rainfall. With respect to rainfall intermittency, even though both models are underestimated, the observed dry proportion, log-Normal  model is likely to simulate number of dry spells better than log-Poisson model. In terms of rainfall extremes, it is demonstrated that log-Poisson and log-Normal  models gave a satisfactory performance for most of the studied stations herein, except for Dungun and Kuala Krai stations, which both located in the east part of Peninsula.


2020 ◽  
Vol 8 (4) ◽  
pp. 256-269 ◽  
Author(s):  
Maximilian S. T. Wanner

Many suggestions have been made on what motivates countries to expand their measures for disaster risk reduction (DRR), including the frequency and severity of natural hazards, accountability mechanisms, and governance capacity. Despite the fact that theoretical arguments have been developed and evidence collected from small-scale case studies, few studies have attempted to explain the substantial variation in the adoption of DRR measures across countries. This study combines available data on DRR measures, natural hazard events, governance, and socioeconomic characteristics to provide a systematic assessment of the changes that have occurred in the state of DRR at the national level. In line with theoretical explanations, there are indeed associations between several measures of frequency and severity and the development of DRR status. Additionally, voice and accountability mechanisms, as well as development aid, might facilitate positive change. Although these first results of a global comparative study on change in DRR have to be taken cautiously, it is a step forward to understanding the drivers of change at the national level.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7776
Author(s):  
Andrzej Urbaniec ◽  
Anna Łaba-Biel ◽  
Anna Kwietniak ◽  
Imoleayo Fashagba

The Upper Cretaceous complex in the central part of the Carpathian Foreland (southern Poland) is relatively poorly recognized and described. Its formations can be classified as unconventional reservoir due to poor reservoir properties as well as a low recovery factor. The main aim of the article is to expand knowledge with conclusions resulting from the analysis of the latest seismic data with the application of seismic sequence stratigraphy. Moreover, the seismic attributes analysis was utilized. The depositional architecture recognition based on both chronostratigraphic horizons and Wheeler diagram interpretations was of paramount importance. A further result was the possibility of using the chronostratigraphic image for tectonostratigraphic interpretation. Two distinguished tectonostratigraphic units corresponding to megasequences were recognized. A tectonic setting of the analyzed interval is associated with global processes noticed by other authors in other parts of the central European Late Cretaceous basin, but also locally accompanied by evidence of small-scale tectonics. This study fills the gap on the issue of paleogeography in the Late Cretaceous sedimentary basin of the Carpathian Foreland. It presents the first results of detailed reconstruction of the basin paleogeography and an attempt to determine the impact of both eustatic and tectonic factors on sedimentation processes.


2019 ◽  
Author(s):  
William de Cothi ◽  
Caswell Barry

AbstractThe hippocampus has long been observed to encode a representation of an animal’s position in space. Recent evidence suggests that the nature of this representation is somewhat predictive and can be modelled by learning a successor representation (SR) between distinct positions in an environment. However, this discretisation of space is subjective making it difficult to formulate predictions about how some environmental manipulations should impact the hippocampal representation. Here we present a model of place and grid cell firing as a consequence of learning a SR from a basis set of known neurobiological features – boundary vector cells (BVCs). The model describes place cell firing as the successor features of the SR, with grid cells forming a low-dimensional representation of these successor features. We show that the place and grid cells generated using the BVC-SR model provide a good account of biological data for a variety of environmental manipulations, including dimensional stretches, barrier insertions, and the influence of environmental geometry on the hippocampal representation of space.


2018 ◽  
Vol 115 (7) ◽  
pp. E1637-E1646 ◽  
Author(s):  
Tale L. Bjerknes ◽  
Nenitha C. Dagslott ◽  
Edvard I. Moser ◽  
May-Britt Moser

Place cells in the hippocampus and grid cells in the medial entorhinal cortex rely on self-motion information and path integration for spatially confined firing. Place cells can be observed in young rats as soon as they leave their nest at around 2.5 wk of postnatal life. In contrast, the regularly spaced firing of grid cells develops only after weaning, during the fourth week. In the present study, we sought to determine whether place cells are able to integrate self-motion information before maturation of the grid-cell system. Place cells were recorded on a 200-cm linear track while preweaning, postweaning, and adult rats ran on successive trials from a start wall to a box at the end of a linear track. The position of the start wall was altered in the middle of the trial sequence. When recordings were made in complete darkness, place cells maintained fields at a fixed distance from the start wall regardless of the age of the animal. When lights were on, place fields were determined primarily by external landmarks, except at the very beginning of the track. This shift was observed in both young and adult animals. The results suggest that preweaning rats are able to calculate distances based on information from self-motion before the grid-cell system has matured to its full extent.


2000 ◽  
Author(s):  
Robin C. Redfield

Abstract Models of a small-scale water rocket are developed as an example of open system modeling by both the bond graph approach and a more classical method. One goal of the development is to determine the benefits of the bond graph approach into affording insight into the system dynamics. Both modeling approaches yield equivalent differential equations as they should, while the bond graph approach yields significantly more insight into the system dynamics. If a modeling goal is to simply find the system equations and predict behavior, the classical approach may be more expeditious. If insight and ease of model modification are desired, the bond graph technique is probably the better choice. But then you have to learn it!


Sign in / Sign up

Export Citation Format

Share Document