scholarly journals Pacific climate reflected in Waipuna Cave dripwater hydrochemistry

2020 ◽  
Author(s):  
Cinthya Nava-Fernandez ◽  
Adam Hartland ◽  
Fernando Gázquez ◽  
Ola Kwiecien ◽  
Norbert Marwan ◽  
...  

Abstract. Cave microclimatic and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the southern Westerlies and the El Niño–Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to secure the quality of ongoing palaeo-environmental reconstructions from this cave. Cave air and water temperatures, drip rates, and CO2, concentration were measured, and samples for water isotopes (δ18O, δD, d-excess, 17Oexcess) and elemental ratios (Mg / Ca, Sr / Ca), were collected continuously and/or at monthly intervals from 10 drip sites inside Waipuna Cave for a period of ca. 3 years. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics we identify three hydrological pathways in Waipuna Cave: diffuse flow, combined flow, and fracture flow. Dripwater isotopes do not reflect seasonal variability, but show higher values during severe drought. Dripwater δ18O values display limited variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough buffering in the epikarst. Mg / Ca and Sr / Ca ratios in dripwaters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December–February), reflecting drier conditions and lack of effective infiltration, and is weakest during the wet austral winter (July–September). The Sr / Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent/incongruent host rock dissolution, which manifests itself in lower Sr / Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide valuable baseline for perceptive interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes.

2020 ◽  
Vol 24 (6) ◽  
pp. 3361-3380 ◽  
Author(s):  
Cinthya Nava-Fernandez ◽  
Adam Hartland ◽  
Fernando Gázquez ◽  
Ola Kwiecien ◽  
Norbert Marwan ◽  
...  

Abstract. Cave microclimate and geochemical monitoring is vitally important for correct interpretations of proxy time series from speleothems with regard to past climatic and environmental dynamics. We present results of a comprehensive cave-monitoring programme in Waipuna Cave in the North Island of New Zealand, a region that is strongly influenced by the Southern Westerlies and the El Niño–Southern Oscillation (ENSO). This study aims to characterise the response of the Waipuna Cave hydrological system to atmospheric circulation dynamics in the southwestern Pacific region in order to assure the quality of ongoing palaeo-environmental reconstructions from this cave. Drip water from 10 drip sites was collected at roughly monthly intervals for a period of ca. 3 years for isotopic (δ18O, δD, d-excess parameter, δ17O, and 17Oexcess) and elemental (Mg∕Ca and Sr∕Ca) analysis. The monitoring included spot measurements of drip rates and cave air CO2 concentration. Cave air temperature and drip rates were also continuously recorded by automatic loggers. These datasets were compared to surface air temperature, rainfall, and potential evaporation from nearby meteorological stations to test the degree of signal transfer and expression of surface environmental conditions in Waipuna Cave hydrochemistry. Based on the drip response dynamics to rainfall and other characteristics, we identified three types of discharge associated with hydrological routing in Waipuna Cave: (i) type 1 – diffuse flow, (ii) type 2 – fracture flow, and (iii) type 3 – combined flow. Drip water isotopes do not reflect seasonal variability but show higher values during severe drought. Drip water δ18O values are characterised by small variability and reflect the mean isotopic signature of precipitation, testifying to rapid and thorough homogenisation in the epikarst. Mg∕Ca and Sr∕Ca ratios in drip waters are predominantly controlled by prior calcite precipitation (PCP). Prior calcite precipitation is strongest during austral summer (December–February), reflecting drier conditions and a lack of effective infiltration, and is weakest during the wet austral winter (July–September). The Sr∕Ca ratio is particularly sensitive to ENSO conditions due to the interplay of congruent or incongruent host rock dissolution, which manifests itself in lower Sr∕Ca in above-average warmer and wetter (La Niña-like) conditions. Our microclimatic observations at Waipuna Cave provide a valuable baseline for the rigorous interpretation of speleothem proxy records aiming at reconstructing the past expression of Pacific climate modes.


2017 ◽  
Vol 43 (2) ◽  
pp. 697 ◽  
Author(s):  
J. Zech ◽  
C. Terrizzano ◽  
E. García-Morabito ◽  
H. Veit ◽  
R. Zech

The arid Central Andes are a key site to study changes in intensity and movement of the three main atmospheric circulation systems over South America: the South American Summer Monsoon (SASM), the Westerlies and the El Niño Southern Oscillation (ENSO). In this semi-arid to arid region glaciers are particularly sensitive to precipitation changes and thus the timing of past glaciation is strongly linked to changes in moisture supply. Surface exposure ages from study sites between 41° and 22°S suggest that glaciers advanced: i) prior to the global Last Glacial Maximum (gLGM) at ~40 ka in the mid (26°- 30°S) and southern Central Andes (35°-41°S), ii) in phase with the gLGM in the northern and southern Central Andes and iii) during the late glacial in the northern Central Andes. Deglaciation started synchronous with the global rise in atmospheric CO2 concentration and increasing temperature starting at ~18 ka. The pre-gLGM glacial advances likely document enhanced precipitation related to the Southern Westerlies, which shifted further to the North at that time than previosuly assumed. During the gLGM glacial advances were favored by decreased temperatures in combination with increased humidity due to a southward shifted Intertropical Convergence Zone (ITCZ) and SASM. During the late-glacial a substantial increase in moisture can be explained by enhanced upper tropospheric easterlies as response to an intensified SASM and sustained La Niña-like conditions over the eastern equatorial Pacific that lead to glacial advances in the northern Central Andes and the lake level highstand Tauca (18-14 ka) on the Altiplano. In the southernmost Central Andes at 39º-41°S, further north at 31°S and in the northernmost Central Andes at 22°S glacial remnants even point to precipitation driven glaciations older than ~115 ka and 260 ka.


2020 ◽  
Vol 33 (1) ◽  
pp. 365-389 ◽  
Author(s):  
Lon L. Hood ◽  
Malori A. Redman ◽  
Wes L. Johnson ◽  
Thomas J. Galarneau

AbstractThe tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.).


Water SA ◽  
2021 ◽  
Vol 47 (2 April) ◽  
Author(s):  
SM Mazibuko ◽  
G Mukwada ◽  
ME Moeletsi

The Luvuvhu River catchment experiences rainfall variability with a high frequency of extremely dry and wet conditions. Understanding the frequency of drought and floods in this catchment area is important to the agriculture sector for managing the negative impacts of these natural hazards. This study was undertaken to investigate the frequency and severity of drought/floods and linkages with the El Niño Southern Oscillation (ENSO) phenomenon. Poor and resource-limited small-scale farmers in the Luvuvhu River catchment area struggle to adjust due to decreasing crop yields and livestock mortality caused by drought and floods. Monthly rainfall data from 15 grid points (0.5° × 0.5°) was used to compute the Standardised Precipitation Index (SPI) for the period between 1979 and 2016. The 3-month SPI was calculated for the December–January–February (DJF) period. The second half of the agricultural season was selected because the influence of ENSO is high during the late summer season (DJF) in the catchment. The SPI results indicate that the agricultural seasons 1982/83, 1991/92 and 2015/16 were characterised by extreme drought. Conversely, the SPI values also show that the wettest seasons were recorded in 1998/99 and 1999/00. The catchment experiences a high frequency of moderate to severe drought in the north and north-eastern parts. Spatially, the occurrence of moderate to severe dry conditions covers large areas in the north and south-western parts. Severe to extreme wet conditions cover large areas in the north and south-eastern parts of the catchment. The SST index (Niño 3.4) shows a strong influence on rainfall variability in the catchment, resulting in either dry or wet conditions. Therefore, this study recommends further research focusing on more climatic modes that influence rainfall variability, as well as further development of drought and flood forecasting to improve farmers’ adaptations options and reliability of weather forecasts used as a tool to manage crop production.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 674 ◽  
Author(s):  
Jian Yu ◽  
Sher Shah ◽  
Guang Zhou ◽  
Zhenzhao Xu ◽  
Qijing Liu

We developed two tree-ring width chronologies of Mongolian Scots pine (Pinus sylvestris var. mongolica) from the low elevation forest of the northern Daxing’anling Mountains of Inner Mongolia. Although the two chronologies come from different sampling sites, significant correlations existed among the chronologies (r = 0.318), and the first principal component (PC1) accounted for 65.9% of total variance over their common period 1792–2016. Climate-growth correlation analysis revealed that the previous June and July Palmer drought severity index (PDSIp6-7) was the main climatic factor controlling tree-ring growth. Using a linear regression model, we reconstructed the PDSIp6-7 for the past 225 years (1792–2016). The reconstruction satisfied required statistical calibration and validation tests, and represented 38.6% of the PDSI variance recorded by instruments over the period 1955–2016. Six wet and five dry periods were revealed during these 225 years. The drought of 1903–1927 was the most severe drought in the study area in the last 225 years. Comparison with other tree-ring-based moisture-sensitive sequences from nearby regions confirmed a high degree of confidence in our reconstruction. The results of a spatial climate correlation analysis with a gridded PDSI dataset revealed that our reconstructions contained strong regional drought signals for the southern Stanovoy Range and the northern Daxing’anling Mountains. The power spectrum revealed the existence of significant frequency cycles, which may be linked to large-scale atmospheric-oceanic variability, such as the El Niño-Southern Oscillation, solar activity, and the North Atlantic Oscillation.


2006 ◽  
Vol 43 ◽  
pp. 34-41 ◽  
Author(s):  
Mary E. Davis ◽  
Lonnie G. Thompson

AbstractAn ice core from the Nevado Huascaran col in the Cordillera Blanca of northern Peru contains high-resolution time series of dust concentrations and size distributions since the end of the last glacial stage. A large dust peak, dated ∼4500 years ago, is contemporaneous with a widespread and prolonged drought that apparently extended from North Africa to eastern China, evidence of which occurs in historical, archeological and paleoclimatic records. This event may have been associated with several centuries of weak Asian/Indian/African monsoons, possibly linked with a protracted cooling in the North Atlantic. During the second half of the 20th century, high austral-summer dust concentrations in the Huascaran record are significantly correlated with atmospheric conditions, such as sea-level pressure and zonal wind velocities that are consistent with El Nino-Southern Oscillation (ENSO) and positive North Atlantic Oscillation (NAO) indices, and with aridity in North Africa, southwest Asia and the Middle East. Therefore, the dominant submicron fraction of the dust may have been transported by more intense northeasterly trade winds from the African dry regions across the tropical Atlantic during a period of frequent and/or intense ENSO activity. The proposed ENSO conditions that may have been linked with drought in the monsoon region may also have contributed to aridity in tropical South America, including the Cordillera Blanca.


2009 ◽  
Vol 22 (22) ◽  
pp. 5854-5869 ◽  
Author(s):  
Jennifer M. Collins ◽  
Rosane Rodrigues Chaves ◽  
Valdo da Silva Marques

Abstract The variation of air temperature at 2 m above the earth’s surface in South America (SA) between 1948 and 2007 is investigated primarily using the NCEP–NCAR reanalysis. In December–February (austral summer), the majority of SA has a mean temperature between 21° and 24°C during 1948–75, and for 1976–2007 the mean temperature is above 24°C. In June–August (austral winter), warmer temperatures are observed in the tropical region in the recent period. The results indicate that Northeast Brazil (NEB) and central Brazil are warmer in the more recent period. In the last seven years (2001–07) compared to the earlier periods, greater warming is noted in the tropical SA region, mainly in NEB and over the North Atlantic Ocean, and cooling is observed in part of the subtropical SA region. Supporting evidence for the warming in Brazil is given through analyses of station data and observational data. The results presented here indicate that the climate change over SA is likely not predominantly a result of variations in El Niño–Southern Oscillation (the most important coupled ocean–atmosphere phenomenon to produce climate variability over SA). Instead, the climate changes likely occur as a response to other natural variability of the climate and/or may be a result of human activity. However, even without ascertaining the specific causes, the most important finding in this work is to demonstrate that a change in the temperature patterns of SA occurred between 1948 and 2007.


2021 ◽  
Vol 17 (3) ◽  
pp. 1005-1023
Author(s):  
Daniel F. Balting ◽  
Monica Ionita ◽  
Martin Wegmann ◽  
Gerhard Helle ◽  
Gerhard H. Schleser ◽  
...  

Abstract. We investigate the climate signature of δ18O tree-ring records from sites distributed all over Europe covering the last 400 years. An empirical orthogonal function (EOF) analysis reveals two distinct modes of variability on the basis of the existing δ18O tree-ring records. The first mode is associated with anomaly patterns projecting onto the El Niño–Southern Oscillation (ENSO) and reflects a multi-seasonal climatic signal. The ENSO link is pronounced for the last 130 years, but it is found to be weak over the period from 1600 to 1850, suggesting that the relationship between ENSO and the European climate may not be stable over time. The second mode of δ18O variability, which captures a north–south dipole in the European δ18O tree-ring records, is related to a regional summer atmospheric circulation pattern, revealing a pronounced centre over the North Sea. Locally, the δ18O anomalies associated with this mode show the same (opposite) sign with temperature (precipitation). Based on the oxygen isotopic signature derived from tree rings, we argue that the prevailing large-scale atmospheric circulation patterns and the related teleconnections can be analysed beyond instrumental records.


2011 ◽  
Vol 24 (14) ◽  
pp. 3649-3666 ◽  
Author(s):  
Jennifer M. Collins

Abstract The variation of near-surface air temperature anomalies in Africa between 1979 and 2010 is investigated primarily using Microwave Sounding Unit (MSU) total lower-tropospheric temperature data from the Remote Sensing Systems (RSS) and the University of Alabama in Huntsville (UAH) datasets. Significant increasing temperature trends were found in each of the following regions examined: all of Africa, Northern Hemisphere Africa, Southern Hemisphere Africa, tropical Africa, and subtropical Africa. Considering the months June–August, regions in both North and South Africa saw significantly warmer temperatures in the most recent period 1995–2010 than in the period 1979–94. However, for the months December–February, the significant warming was concentrated in the north of Africa. When the two most recent decades are compared with the period 1979–90, warming is observed over these same regions and is concentrated in the most recent decade, from 2001 to 2010. The results presented here indicate that the climate change over Africa is likely not predominantly a result of variations in the El Niño–Southern Oscillation (a teleconnection that has been previously shown to affect climate in some parts of Africa). Instead the climate changes likely occur owing to other natural variability of the climate and/or may be a result of human activity. However, even without ascertaining the specific causes, the most important finding in this work is to demonstrate that a significant rise in African temperatures occurred between 1979 and 2010.


2021 ◽  
Vol 7 ◽  
Author(s):  
Zimeng Su ◽  
Gabriela S. Pilo ◽  
Stuart Corney ◽  
Neil J. Holbrook ◽  
Mao Mori ◽  
...  

Marine heatwaves (MHWs) are prolonged extreme oceanic warm water events. Globally, the frequency and intensity of MHWs have been increasing in recent years, and it is expected that this trend is reflected in the Kerguelen Plateau region. MHWs can negatively impact the structure of marine biodiversity, marine ecosystems, and commercial fisheries. Considering that the KP is a hot-spot for marine biodiversity, characterizing MHWs and their drivers for this region is important, but has not been performed. Here, we characterize MHWs in the KP region between January 1994 and December 2016 using a combination of remotely sensed observations and output from a publicly available model hindcast simulation. We describe a strong MHW event that starts during the 2011/2012 austral summer and persists through winter, dissipating in late 2012. During the winter months, the anomalous temperature signal deepens from the surface to a depth of at least 150 m. We show that downwelling-favorable winds occur in the region during these months. At the end of 2012, as the MHW dissipates, upwelling-favorable winds prevail. We also show that the ocean temperature on the KP is significantly correlated with key modes of climate variability. Over the KP, temperature at both the ocean surface and at a depth of 150 m correlates significantly with the Indian Ocean Dipole. To the south of the KP, temperature variations are significantly correlated with the El Niño Southern Oscillation, and to both the north and south of the KP, with the Southern Annular Mode. These results suggest there may be potential predictability in ocean temperatures, and their extremes, in the KP region. Strong MHWs, like the event in 2012, may be detrimental to the unique ecosystem of this region, including economically relevant species, such as the Patagonian Toothfish.


Sign in / Sign up

Export Citation Format

Share Document