scholarly journals 65-year changes of annual streamflow volumes across Europe with a focus on the Mediterranean basin

Author(s):  
Daniele Masseroni ◽  
Stefania Camici ◽  
Alessio Cislaghi ◽  
Giorgio Vacchiano ◽  
Christian Massari ◽  
...  

Abstract. Determining the spatio-temporal variability of annual streamflow volume plays a relevant role in hydrology for improving and implementing sustainable and resilient policies and practices of water resource management. This study investigates annual streamflow volume trends in a newly-assembled, consolidated and validated dataset of daily mean river flow records from more than 3,000 stations, which cover near-natural basins in more than 40 countries across Europe. Although the dataset contains streamflow time-series from 1850 to 2015 in some stations, the statistical analyses were carried out by including observations from 1950 to 2015 in order to have a consistent and reliable dataset over the continent. Trends were detected calculating the slope of Theil-Sen's line over the annual anomalies of streamflow volume. The results show annual streamflow volume trends emerged at European scale, with a marked negative tendency in Mediterranean regions (about −1 × 103 m3/(km2 year)) and a generally positive trend in northern ones (about 0.5 × 103 m3/(km2 year)). The annual streamflow volume trend patterns appear in agreement with the continental-scale climate change observations in response to climate change drivers. In the Mediterranean area, the declining of annual streamflow volumes started in 1965 and since early 80' volumes are consistently lower than the average. The spatio-temporal annual streamflow volume patterns observed in this work can help to contextualize short-term trends and regional studies already available in the scientific literature as well as to provide a valid benchmark for further accurate quantitative analysis on annual streamflow volumes.

2021 ◽  
Vol 25 (10) ◽  
pp. 5589-5601
Author(s):  
Daniele Masseroni ◽  
Stefania Camici ◽  
Alessio Cislaghi ◽  
Giorgio Vacchiano ◽  
Christian Massari ◽  
...  

Abstract. Determining the spatiotemporal variability in the annual streamflow volume plays a relevant role in hydrology with regard to improving and implementing sustainable and resilient policies and practices of water resource management. This study investigates annual streamflow volume trends in a newly assembled, consolidated, and validated data set of daily mean river flow records from more than 3000 stations which cover near-natural basins in more than 40 countries across Europe. Although the data set contains streamflow time series from 1900 to 2013 in some stations, the statistical analyses were carried out by including observations from 1950 to 2013 in order to have a consistent and reliable data set over the continent. Trends were detected by calculating the slope of the Theil–Sen line over the annual anomalies of streamflow volume. The results show that annual streamflow volume trends have emerged at European scale, with a marked negative tendency in Mediterranean regions, with about -1×103 m3/(km2 yr−2), and a generally positive trend in northern ones, with about 0.5×103 m3/(km−2 yr−2). The annual streamflow volume trend patterns appear to be in agreement with the continental-scale meteorological observations in response to climate change drivers. In the Mediterranean area, the decline of annual streamflow volumes started in 1965, and since the early 1980s, volumes have consistently been lower than the 1950–2013 average. The spatiotemporal annual streamflow volume patterns observed in this work can help to contextualize short-term trends and regional studies already available in the scientific literature, as well as to provide a valid benchmark for further accurate quantitative analysis of annual streamflow volumes.


2013 ◽  
Vol 17 (1) ◽  
pp. 325-339 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year) and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises). In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be predominantly altered in the Mediterranean but also in the Northern climates. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 605
Author(s):  
Alba Piña-Rey ◽  
Estefanía González-Fernández ◽  
María Fernández-González ◽  
Mª. Nieves Lorenzo ◽  
Fco. Javier Rodríguez-Rajo

Viticultural climatic indices were assessed for the evaluation of the meteorological variations in the requirements of wine cultivars. The applied bioclimatic indices have been widely used to provide an initial evaluation of climate change impacts on grapevine and to delineate wine regions and suitable areas for planting around the world. The study was carried out over a period of 16 years (from 2000 to 2015) in five Designation of Origin areas in Northwestern Spain located in the Eurosiberian region, the transition zone between the Eurosiberian and the Mediterranean areas, and in the Mediterranean area. In addition, the high-resolution meteorological dataset “Spain02” was applied to the bioclimatic indices for the period 1950–2095. To further assess the performance of “Spain02”, Taylor diagrams were elaborated for the different bioclimatic indices. A significant trend to an increase of the Winkler, Huglin, Night Cold Index and GSS Indices was detected in the North-western Spain, whereas slight negative trends for BBLI and GSP Indices were observed. To analyze future projections 2061–2095, data from the high-resolution dynamically downscaled daily climate simulations from EURO-CORDEX project were used. To further assess the performance of Spain02, Taylor diagrams were elaborated for the different bioclimatic indices. A trend to an increase of the Winkler, Huglin, Night Cold Index and GSP Indices was detected in Northwestern Spain, whereas slight negative trends for BBLI and GSP Indices were observed. Our results showed that climatic conditions in the study region could variate for the crop in the future, more for Mediterranean than Eurosiberian bioclimatic area. Due to an advance in the phenological events or the vintage data, more alcohol-fortified wines and variations in the acidity level of wines could be expected in Northwestern Spain, these processes being most noticeable in the Mediterranean area. The projections for the BBLI and GSP Indices will induce a decrease in the pressure of the mildew attacks incidence in the areas located at the Eurosiberian region and the nearest transition zones. Projections showed if the trend of temperature increase continues, some cultural practice variations should be conducted in order to preserve the grape cultivation suitability in the studied area.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5307
Author(s):  
Antonio Moretti ◽  
Charalampos Pitas ◽  
George Christofi ◽  
Emmanuel Bué ◽  
Modesto Gabrieli Francescato

The paper presents a survey on the situation in terms of solutions for grid integration throughout the Mediterranean area in the framework of climate change and energy transition. The objective of the study is focused on Mediterranean region connectivity initiatives in the context of the broader vision of an interconnected European–Mediterranean (Euro–Med) power system for a future low-carbon energy system as the fundamental objective of Med-TSO, the Association of the Mediterranean Transmission System Operators (TSOs) for electricity. The analysis examines how the power grid connectivity evolves from now on to 2030, describing the progress made to date in integrating the power grids of the Mediterranean region as well as the future possibilities for a more integrated power grid covering the whole region. The research, conducted within Mediterranean Project II of Med-TSO, includes an overview on the current situation of the interconnections and the proposal for the 2030 interconnections Master Plan, coherent with the national development plans (NDPs) and shared energy scenarios for the whole region at the same horizon of 2030. It conducts an assessment of the gap between the current and the 2030 expected situation, taking into account the energy transition toward 2030 objectives resulting from the achievements of climate change pledges, local governmental policies and EU strategy for neighboring countries and Africa. The solutions survey includes technical solutions, procedures and rules to improve systems’ integration and increase regional electricity exchanges in Med-TSO countries, and is aimed at achieving a higher quality of services and better efficiency of energy supply in Med-TSO member countries in the framework of the expected energy transition. The main scope is to present solutions that will be made available due to maturity and experience in the coming decade, specifically: high voltage direct current (HVDC) transmission technologies, energy storage, sectors coupling, smart grid technologies and services, inter-TSO and transmission–distribution cooperation platforms, etc. The article presents two case studies: the island paradigm and a new cross-border interconnection project of common interest. Finally, the post-pandemic core role of TSOs, which has become more relevant than ever, is transformed into a key-enabler of energy transition towards a sustainable, resilient and innovative climate-neutral recovery.


2021 ◽  
Author(s):  
Juna Probha Devi ◽  
Chandan Mahanta ◽  
Anamika Barua

Abstract This study is aimed at studying long–term historical and future (1950-2099) trends for the RCP 4.5 and RCP 8.5 on approximately 30-year timescale at annual and seasonal for precipitation and at annual, seasonal, monthly, and diurnal temperature range (DTR) for temperature maximum (T_max), temperature minimum (T_min) variations using statistical trend analysis techniques– Mann–Kendall test (MK) and Sen's slope estimator (S) and the homogeneity test using Pettitt’s test. The study is carried out in three spatial points across the Tawang Chu in the district of Tawang, Arunachal Pradesh. The summer mean precipitation for RCP 4.5 (2006-2065) shows a positive trend with a rise in precipitation between 1.56 mm to 9.94 mm in all the study points. The mean annual precipitation statistics for all the points show an increase of RCP 4.5 in 2006-2052 and 2053-2099 timescale. Both RCP 4.5 and 8.5 scenarios exhibit a uniform rise in T_min and T_max during investigation. For all the points, the results likewise reveal a rising trend in mean annual T_min and T_max. Still, the inter-decadal temperature statistical analysis shows that the increase in mean annual T_min is greater than the increase in T_max, indicating a decreasing trend in DTR. It is anticipated that this study's outcomes will contribute to a better understanding of the relationship between change in climate and the regional hydrological behaviour and will be benefitting the society to develop a regional strategy for water resource management, can serve as a resource for climate impact research scope- assessments, adaptation, mitigation, and disaster management strategies for India's north-eastern region.


2012 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Stella Lovelli ◽  
Michele Perniola ◽  
Emanuele Scalcione ◽  
Antonio Troccoli ◽  
Lewis H. Ziska

2006 ◽  
Vol 31 ◽  
pp. 85-95 ◽  
Author(s):  
M Moriondo ◽  
P Good ◽  
R Durao ◽  
M Bindi ◽  
C Giannakopoulos ◽  
...  

2012 ◽  
Vol 424-425 ◽  
pp. 238-251 ◽  
Author(s):  
Kerstin Verzano ◽  
Ilona Bärlund ◽  
Martina Flörke ◽  
Bernhard Lehner ◽  
Ellen Kynast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document