scholarly journals High resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River Basin as case study

2021 ◽  
Author(s):  
Paolo Filippucci ◽  
Luca Brocca ◽  
Raphael Quast ◽  
Luca Ciabatta ◽  
Carla Saltalippi ◽  
...  

Abstract. Satellite sensors to infer rainfall measurements have become widely available in the last years, but their spatial resolution usually exceed 10 kilometres, due to technological limitation. This poses an important constraint on their use for application such as water resource management, index insurance evaluation or hydrological models, which require more and more detailed information. In this work, the algorithm SM2RAIN (Soil Moisture to Rain) for rainfall estimation is applied to a high resolution soil moisture product derived from Sentinel-1, named S1-RT1, characterized by 1 km spatial resolution (500 m spacing), and to the 25 km ASCAT soil moisture (12.5 km spacing), resampled to the same grid of S1-RT1, to obtain rainfall products with the same spatial and temporal resolution over the Po River basin. In order to overcome the need of calibration and to allow its global application, a parameterized version of SM2RAIN algorithm was adopted along with the standard one. The capabilities in estimating rainfall of each obtained product were then compared, to assess both the parameterized SM2RAIN performances and the added value of Sentinel-1 high spatial resolution. The results show that good estimates of rainfall are obtainable from Sentinel-1 when considering aggregation time steps greater than 1 day, since to the low temporal resolution of this sensor (from 1.5 to 4 days over Europe) prevents its application to infer daily rainfall. On average, the ASCAT derived rainfall product performs better than S1-RT1 one, even if the performances are equally good when 30 days accumulated rainfall is considered, being the mean Pearson’s correlation of the rainfall obtained from ASCAT and S1-RT1 equal to 0.74 and 0.73, respectively, using the parameterized SM2RAIN. Notwithstanding this, the products obtained from Sentinel-1 outperform those from ASCAT in specific areas, like in valleys inside mountain regions and most of the plains, confirming the added value of the high spatial resolution information in obtaining spatially detailed rainfall. Finally, the parameterized products performances are similar to those obtained with SM2RAIN calibration, confirming the reliability of the parameterized algorithm for rainfall estimation in this area and fostering the possibility to apply SM2RAIN worldwide even without the availability of a rainfall benchmark product.

2009 ◽  
Vol 13 (10) ◽  
pp. 1887-1896 ◽  
Author(s):  
T. Pellarin ◽  
T. Tran ◽  
J.-M. Cohard ◽  
S. Galle ◽  
J.-P. Laurent ◽  
...  

Abstract. An original and simple method to map surface soil moisture over large areas has been developed to obtain data with a high temporal and spatial resolution for the study of possible feedback mechanisms between soil moisture and convection in West Africa. A rainfall estimation product based on Meteosat geostationary satellite measurements is first used together with a simple Antecedent Precipitation Index (API) model to produce soil moisture maps at a spatial resolution of 10×10 km2 and a temporal resolution of 30-min. However, given the uncertainty of the satellite-based rainfall estimation product, the resulting soil moisture maps are not sufficiently accurate. For this reason, a technique based on assimilating AMSR-E C-band measurements into a microwave emission model was developed in which the estimated rainfall rates between two successive AMSR-E brightness temperature (TB) measurements are adjusted by multiplying them by a factor between 0 and 7 that minimizes the difference between simulated and observed TBs. Ground-based soil moisture measurements obtained at three sites in Niger, Mali and Benin were used to assess the method which was found to improve the soil moisture estimates on all three sites.


2018 ◽  
Vol 10 (12) ◽  
pp. 1950 ◽  
Author(s):  
Luca Cenci ◽  
Luca Pulvirenti ◽  
Giorgio Boni ◽  
Nazzareno Pierdicca

The next generation of synthetic aperture radar (SAR) systems could foresee satellite missions based on a geosynchronous orbit (GEO SAR). These systems are able to provide radar images with an unprecedented combination of spatial (≤1 km) and temporal (≤12 h) resolutions. This paper investigates the GEO SAR potentialities for soil moisture (SM) mapping finalized to hydrological applications, and defines the best compromise, in terms of image spatio-temporal resolution, for SM monitoring. A synthetic soil moisture–data assimilation (SM-DA) experiment was thus set up to evaluate the impact of the hydrological assimilation of different GEO SAR-like SM products, characterized by diverse spatio-temporal resolutions. The experiment was also designed to understand if GEO SAR-like SM maps could provide an added value with respect to SM products retrieved from SAR images acquired from satellites flying on a quasi-polar orbit, like Sentinel-1 (POLAR SAR). Findings showed that GEO SAR systems provide a valuable contribution for hydrological applications, especially if the possibility to generate many sub-daily observations is sacrificed in favor of higher spatial resolution. In the experiment, it was found that the assimilation of two GEO SAR-like observations a day, with a spatial resolution of 100 m, maximized the performances of the hydrological predictions, for both streamflow and SM state forecasts. Such improvements of the model performances were found to be 45% higher than the ones obtained by assimilating POLAR SAR-like SM maps.


2017 ◽  
Vol 44 ◽  
pp. 89-100 ◽  
Author(s):  
Luca Cenci ◽  
Luca Pulvirenti ◽  
Giorgio Boni ◽  
Marco Chini ◽  
Patrick Matgen ◽  
...  

Abstract. The assimilation of satellite-derived soil moisture estimates (soil moisture–data assimilation, SM–DA) into hydrological models has the potential to reduce the uncertainty of streamflow simulations. The improved capacity to monitor the closeness to saturation of small catchments, such as those characterizing the Mediterranean region, can be exploited to enhance flash flood predictions. When compared to other microwave sensors that have been exploited for SM–DA in recent years (e.g. the Advanced SCATterometer – ASCAT), characterized by low spatial/high temporal resolution, the Sentinel 1 (S1) mission provides an excellent opportunity to monitor systematically soil moisture (SM) at high spatial resolution and moderate temporal resolution. The aim of this research was thus to evaluate the impact of S1-based SM–DA for enhancing flash flood predictions of a hydrological model (Continuum) that is currently exploited for civil protection applications in Italy. The analysis was carried out in a representative Mediterranean catchment prone to flash floods, located in north-western Italy, during the time period October 2014–February 2015. It provided some important findings: (i) revealing the potential provided by S1-based SM–DA for improving discharge predictions, especially for higher flows; (ii) suggesting a more appropriate pre-processing technique to be applied to S1 data before the assimilation; and (iii) highlighting that even though high spatial resolution does provide an important contribution in a SM–DA system, the temporal resolution has the most crucial role. S1-derived SM maps are still a relatively new product and, to our knowledge, this is the first work published in an international journal dealing with their assimilation within a hydrological model to improve continuous streamflow simulations and flash flood predictions. Even though the reported results were obtained by analysing a relatively short time period, and thus should be supported by further research activities, we believe this research is timely in order to enhance our understanding of the potential contribution of the S1 data within the SM–DA framework for flash flood risk mitigation.


2021 ◽  
Vol 13 (4) ◽  
pp. 732
Author(s):  
Ryota Nomura ◽  
Kazuo Oki

The normalized difference vegetation index (NDVI) is a simple but powerful indicator, that can be used to observe green live vegetation efficiently. Since its introduction in the 1970s, NDVI has been used widely for land management, food security, and physical models. For these applications, acquiring NDVI in both high spatial resolution and high temporal resolution is preferable. However, there is generally a trade-off between temporal and spatial resolution when using satellite images. To relieve this problem, a convolutional neural network (CNN) based downscaling model was proposed in this research. This model is capable of estimating 10-m high resolution NDVI from MODIS (Moderate Resolution Imaging Spectroradiometer) 250-m resolution NDVI by using Sentinel-1 10-m resolution synthetic aperture radar (SAR) data. First, this downscaling model was trained to estimate Sentinel-2 10-m resolution NDVI from a combination of upscaled 250-m resolution Sentinel-2 NDVI and 10-m resolution Sentinel-1 SAR data, by using data acquired in 2019 in the target area. Then, the generality of this model was validated by applying it to test data acquired in 2020, with the result that the model predicted the NDVI with reasonable accuracy (MAE = 0.090, ρ = 0.734 on average). Next, 250-m NDVI from MODIS data was used as input to confirm this model under conditions replicating an actual application case. Although there were mismatch in the original MODIS and Sentinel-2 NDVI data, the model predicted NDVI with acceptable accuracy (MAE = 0.108, ρ = 0.650 on average). Finally, this model was applied to predict high spatial resolution NDVI using MODIS and Sentinel-1 data acquired in target area from 1 January 2020~31 December 2020. In this experiment, double cropping of cabbage, which was not observable at the original MODIS resolution, was observed by enhanced temporal resolution of high spatial resolution NDVI images (approximately ×2.5). The proposed method enables the production of 10-m resolution NDVI data with acceptable accuracy when cloudless MODIS NDVI and Sentinel-1 SAR data is available, and can enhance the temporal resolution of high resolution 10-m NDVI data.


2015 ◽  
Vol 12 (10) ◽  
pp. 10559-10601 ◽  
Author(s):  
P. Lopez Lopez ◽  
N. Wanders ◽  
J. Schellekens ◽  
L. J. Renzullo ◽  
E. H. Sutanudjaja ◽  
...  

Abstract. The coarse spatial resolution of global hydrological models (typically > 0.25°) limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tuned river models. A possible solution to the problem may be to drive the coarse resolution models with locally available high spatial resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigate the impact of assimilating streamflow and satellite soil moisture observations on the accuracy of global hydrological model estimations, when driven by either coarse- or high-resolution meteorological observations in the Murrumbidgee river basin in Australia. To this end, a 0.08° resolution version of the PCR-GLOBWB global hydrological model is forced with downscaled global meteorological data (from 0.5° downscaled to 0.08° resolution) obtained from the WATCH Forcing Data methodology applied to ERA-Interim (WFDEI) and a local high resolution gauging station based gridded dataset (0.05°). Downscaled satellite derived soil moisture (from approx. 0.5° downscaled to 0.08° resolution) from AMSR-E and streamflow observations collected from 23 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global meteorological data. Results show that the assimilation of soil moisture observations results in the largest improvement of the model estimates of streamflow. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improvement in streamflow simulations (20 % reduction in RMSE). Furthermore, results show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. We conclude that it is possible to improve PCR-GLOBWB simulations forced by coarse resolution meteorological data with assimilation of downscaled spaceborne soil moisture and streamflow observations. These improved model results are close to the ones from a local model forced with local meteorological data. These findings are important in light of the efforts that are currently done to go to global hyper-resolution modelling and can help to advance this research.


2019 ◽  
Vol 23 (1) ◽  
pp. 191-206 ◽  
Author(s):  
Eveline C. van der Linden ◽  
Reindert J. Haarsma ◽  
Gerard van der Schrier

Abstract. Global climate models project widespread decreases in soil moisture over large parts of Europe. This paper investigates the impact of model resolution on the magnitude and seasonality of future soil drying in central-western Europe. We use the general circulation model EC-Earth to study two 30-year periods representative of the start and end of the 21st century under low-to-moderate greenhouse gas forcing (RCP4.5). In our study area, central-western Europe, at high spatial resolution (∼25 km) soil drying is more severe and starts earlier in the season than at standard resolution (∼112 km). Here, changes in the large-scale atmospheric circulation and local soil moisture feedbacks lead to enhanced evapotranspiration in spring and reduced precipitation in summer. A more realistic position of the storm track at high model resolution leads to reduced biases in precipitation and temperature in the present-day climatology, which act to amplify future changes in evapotranspiration in spring. Furthermore, in the high-resolution model a stronger anticyclonic anomaly over the British Isles extends over central-western Europe and supports soil drying. The resulting drier future land induces stronger soil moisture feedbacks that amplify drying conditions in summer. In addition, soil-moisture-limited evapotranspiration in summer promotes sensible heating of the boundary layer, which leads to a lower relative humidity with less cloudy conditions, an increase in dry summer days, and more incoming solar radiation. As a result a series of consecutive hot and dry summers appears in the future high-resolution climate. The enhanced drying at high spatial resolution suggests that future projections of central-western European soil drying by CMIP5 models have been potentially underestimated. Whether these results are robust has to be tested with other global climate models with similar high spatial resolutions.


2021 ◽  
pp. 1-9
Author(s):  
Yuman Fang ◽  
Minrui Zhang ◽  
Junfeng Wang ◽  
Lehui Guo ◽  
Xueling Liu ◽  
...  

Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Caterina M. Antognazza ◽  
Isabella Vanetti ◽  
Vanessa De Santis ◽  
Adriano Bellani ◽  
Monica Di Francesco ◽  
...  

The reintroduction of the extinct beluga sturgeon (Huso huso L.), an anadromous species with economic and traditional relevance, is a priority in next conservation strategies in Northern Italy. The EU-LIFE NATURA project aims to reintroduce the beluga sturgeon in the Po River basin through a captive breeding program. Critical requirements for the success of the program are river connectivity and knowledge of genetic diversity of the selected broodstocks to ensure self-sustainability of reintroduced populations. Here, the four broodstocks used for the reintroduction of beluga sturgeon have been genetically screened, genotyping 13 loci and sequencing mitochondrial DNA cytochrome b (Cyt b) gene and the entire mitochondrial DNA control region (D-Loop). The four broodstocks showed a medium-high level of nuclear genetic variability and the presence of two sub-populations, evidencing a total level of inbreeding coefficients able to sustain the good potential as future breeders. Mitochondrial analyses showed a genetic variability comparable to wild populations, further strengthening the positive potential of the investigated broodstock. Therefore, this study, showed how the degree of genetic diversity found within the four broodstocks used for H. huso reintroduction in the Po River basin could be suitable to ensure the success of the program, avoiding the inbreeding depression associated with founder effect and captive breeding.


2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


Sign in / Sign up

Export Citation Format

Share Document