scholarly journals Topography- and nightlight-based national flood risk assessment in Canada

2017 ◽  
Vol 21 (4) ◽  
pp. 2219-2232 ◽  
Author(s):  
Amin Elshorbagy ◽  
Raja Bharath ◽  
Anchit Lakhanpal ◽  
Serena Ceola ◽  
Alberto Montanari ◽  
...  

Abstract. In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.

2016 ◽  
Author(s):  
Amin Elshorbagy ◽  
Anchit Lakhanpal ◽  
Bharath Raja ◽  
Serena Ceola ◽  
Alberto Montanari ◽  
...  

Abstract. In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available at reasonably fine resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models namely Elevation Above Nearest Drainage (EAND) and Distance From Nearest Drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the City using hydraulic modeling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.


2021 ◽  
Vol 884 (1) ◽  
pp. 012025
Author(s):  
Pattaramone Manawongcharoen ◽  
Thitirat Panbamrungkij

Abstract Flooding is one of the main disasters in Thailand and Mueang Sing Buri is among those areas hit. Located on the Chao Phraya River Basin, in the central region of Thailand, the area receives a large amount of runoff during monsoon seasons which causes frequent flood disasters. The aims of this research are to create a flood hazard map and to estimate the number of people that may need shelter after the occurrence of a flood, and to evaluate whether the shelter capacity is adequate in Mueang Sing Buri. To explore the potential locations of emergency shelters, the relevant information related to flooding was initially recorded, such as building detail, flood depth, elevation map, and flood risk map. The available space of each building varies by the characteristics of building types. The calculation of shelter capacity thus depends on characteristics of the buildings, accessibility, and percent of vacant area. The emergency shelter assessment benefits many sectors in the design of preparation plans for hazard management.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Vahdettin Demir ◽  
Ozgur Kisi

In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of topographical data and preparation of digital elevation model using ArcGIS, (2) simulation of flood lows of different return periods using a hydraulic model (HEC-RAS), and (3) preparation of flood risk maps by integrating the results of (1) and (2).


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2021
Author(s):  
Chen-Fa Wu ◽  
Szu-Hung Chen ◽  
Ching-Wen Cheng ◽  
Luu Van Thong Trac

Developing countries in the global south that contribute less to climate change have suffered greater from its impacts, such as extreme climatic events and disasters compared to developed countries, causing climate justice concerns globally. Ho Chi Minh City has experienced increased intensity and frequency of climate change-induced urban floods, causing socio-economic damage that disturbs their livelihoods while urban populations continue to grow. This study aims to establish a citywide flood risk map to inform risk management in the city and address climate justice locally. This study applied a flood risk assessment framework integrating a coupled nature–human approach and examined the spatial distribution of urban flood hazard and urban flood vulnerability. A flood hazard map was generated using selected morphological and hydro-meteorological indicators. A flood vulnerability map was generated based on a literature review and a social survey weighed by experts’ priorities using the Fuzzy Delphi Method and Analytic Network Process. Vulnerability indicators including demographic characteristics, infrastructure, and land use patterns were used to generate a flood vulnerability map. The results illustrate that almost the entire central and northeastern parts of the city are at high flood risk, whereas the western part is at low flood risk. The findings have implications in urban planning via identifying risk hot spots in order to prioritize resources for mitigating hazards and enhancing community resilience to urban floods.


2018 ◽  
Vol 40 ◽  
pp. 06022
Author(s):  
Kun Yeun Han ◽  
Jun Hyung Park ◽  
Hehun Choi

A grid-based numerical model is developed by improving the diffusion hydrodynamic model that can accurately reflect LiDAR data and enable an efficient hydraulic analysis by linking river and drainage networks. In order to verify 2D model, recent flood events, which occurred in the Gimcheon area during Typhoon Rusa on 2002 is considered. For the estimations of flood disaster vulnerability index, population density, household income, access to evacuation route/time, and shelter information are included. The flood hazard map considering flood depth, velocity, flood arrival time is combined with the flood vulnerability information to derive a flood risk map. The flood risk map presented in this study can provide useful information for the preparation of evacuation plan through accurate flood hazard results and disaster vulnerability index.


Author(s):  
J S Niranjana ◽  
Feba Paul ◽  
Hridya D Nambiar ◽  
Ashly Joy ◽  
Neethu Roy

Flood is one of the most dangerous and deadliest natural hazards in the world which devastates both life and economy to a very large extent. In Kerala, climate change induced floods are becoming an annual problem. In the midyear of 2018 and 2019, Thiruvananthapuram, the capital city of Kerala, witnessed heavy rainfall and strong winds which resulted in widespread damage in various parts of the City. Flood risk assessment study provides a comprehensive detail of geographic areas and elements that are vulnerable to the particular hazard. As far as Thiruvananthapuram is considered, most of the flood risk assessment studies available were found to be based only on a specific catchment or stream. This paper discusses the need of flood risk assessment study of Thiruvananthapuram City and also focuses on estimating the intensity of storm causing flood. In this work, the major natural drains and the places prone to drainage concentration are delineated from Digital Elevation Model of the study area. The drainage map and land use map are prepared using ArcGIS and ERDAS software respectively. The hydraulic modeling is done using HEC-RAS software and simulations for different rainfall intensities are carried out to estimate the magnitude of flood and to identify the major flood prone areas in the City. This study presents a systematic methodology that can be adopted for flood risk assessment of urban cities, especially when there is less available data.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 420
Author(s):  
Zening Wu ◽  
Yuhai Cui ◽  
Yuan Guo

With the progression of climate change, the intensity and frequency of extreme rainfall have increased in many parts of the world, while the continuous acceleration of urbanization has made cities more vulnerable to floods. In order to effectively estimate and assess the risks brought by flood disasters, this paper proposes a regional flood disaster risk assessment model combining emergy theory and the cloud model. The emergy theory can measure many kinds of hazardous factor and convert them into unified solar emergy (sej) for quantification. The cloud model can transform the uncertainty in flood risk assessment into certainty in an appropriate way, making the urban flood risk assessment more accurate and effective. In this study, the flood risk assessment model combines the advantages of the two research methods to establish a natural and social dual flood risk assessment system. Based on this, the risk assessment system of the flood hazard cloud model is established. This model was used in a flood disaster risk assessment, and the risk level was divided into five levels: very low risk, low risk, medium risk, high risk, and very high risk. Flood hazard risk results were obtained by using the entropy weight method and fuzzy transformation method. As an example for the application of this model, this paper focuses on the Anyang region which has a typical continental monsoon climate. The results show that the Anyang region has a serious flood disaster threat. Within this region, Linzhou County and Anyang County have very high levels of risk for flood disaster, while Hua County, Neihuang County, Wenfeng District and Beiguan District have high levels of risk for flood disaster. These areas are the core urban areas and the economic center of local administrative regions, with 70% of the industrial clusters being situated in these regions. Only with the coordinated development of regional flood control planning, economy, and population, and reductions in the uncertainty of existing flood control and drainage facilities can the sustainable, healthy and stable development of the region be maintained.


2018 ◽  
Vol 39 (1) ◽  
pp. 17-26
Author(s):  
Faiza hassainia Bouzahar ◽  
Lahbaci Ouerdachi ◽  
Mahdi Keblouti ◽  
Akram Seddiki

AbstractThe study of flood risk involves the knowledge of the spatial variability in the characteristics of the vegetation cover, terrain, climate and changes induced by the intervention of humans in watersheds. The increased needs of the actors in land management mean that static maps no longer meet the requirements of scientists and decision-makers. Access is needed to the data, methods and tools to produce complex maps in response to the different stages of risk evaluation and response. The availability of very high spatial resolution remote sensing data (VHSR) and digital terrain model (DTM) make it possible to detect objects close to human size and, therefore, is of interest for studying anthropogenic activities. The development of new methods and knowledge using detailed spatial data, coupled with the use of GIS, naturally becomes beneficial to the risks analysis. Indeed, the extraction of information from specific processes, such as vegetation indices, can be used as variables such as water heights, flow velocities, flow rates and submersion to predict the potential consequences of a flood. The functionalities of GIS for cartographic overlay and multi-criteria spatial analysis make it possible to identify the flood zones according to the level of risk from the flood, thus making it a useful decision-making tool.This study was carried out on the territory of watersheds in the Annaba region, East of Algeria. The choice was guided by the availability of data (satellites images, maps, hydrology, etc.) and hydrological specificities (proximity to an urban area). The adopted model is divided into two parts. The first part is to establish a methodology for the preservation of wetland biodiversity and the protection of urban areas against floods. Thanks to the multi-criteria spatial analysis and the functionalities of the GIS, we established a flood risk map for the watershed defined above. The result was satisfactory compared with the field reality. The second part of the model consisted of the integration of cadastral information with the flood risk map obtained in the first part of our research.The primary objective of this mapping is to contribute to the development of flood risk management plans (in the sense of risk reduction). The mapping stage also provides quantitative elements to more accurately assess the vulnerability of a territory.


2020 ◽  
Vol 9 (7) ◽  
pp. 460 ◽  
Author(s):  
Cesar Casiano Flores ◽  
Joep Crompvoets

Climate change has increased pluvial flood risks in cities around the world. To mitigate floods, pluvial risk maps with climate change scenarios have been developed to help major urban areas adapt to a changing climate. In some cases, subnational governments have played a key role to develop these maps. However, governance research about the role of subnational governments in geospatial data development in urban water transitions has received little attention. To address this gap, this research applies the Governance Assessment Tool as an evaluative framework to increase our understanding of the governance factors that support the development of pluvial flood risk maps at the subnational level. For this research, we selected the region of Flanders in Belgium. This region is considered among the frontrunners when it comes to the creation of a pluvial flood risk map with climate change scenarios. Data have been collected through in-depth interviews with steering committee actors involved in the development process of the map. The research identified that the current governance context is supportive of the creation of the flood risk map. The government of Flanders plays a key role in this process. The most supportive qualities of the governance context are those related to the degree of fragmentation (extent and coherence), while the less supportive ones are those related to the “quest for control” (flexibility and intensity). Under this governance context, government actors play the primary role. The Flemish government led the maps’ creation process and it was supported by the lower governmental levels. As the provincial government was an important actor to increase local participation, collaboration with private and non-governmental actors in the steering committee was more limited. The financial resources were also limited and the process required a continuous development of trust. Yet, the Flemish Environmental Agency, with the use of technology, was able to increase such trust during the process.


Sign in / Sign up

Export Citation Format

Share Document